Ломаные Эйлера и временные шкалы в условиях Каратеодори
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 159-171
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2008_14_4_a11,
     author = {D. V. Khlopin},
     title = {{\CYRL}{\cyro}{\cyrm}{\cyra}{\cyrn}{\cyrery}{\cyre} {{\CYREREV}{\cyrishrt}{\cyrl}{\cyre}{\cyrr}{\cyra}} {\cyri} {\cyrv}{\cyrr}{\cyre}{\cyrm}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyre} {\cyrsh}{\cyrk}{\cyra}{\cyrl}{\cyrery} {\cyrv}~{\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya}{\cyrh} {{\CYRK}{\cyra}{\cyrr}{\cyra}{\cyrt}{\cyre}{\cyro}{\cyrd}{\cyro}{\cyrr}{\cyri}}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--171},
     year = {2008},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a11/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - Ломаные Эйлера и временные шкалы в условиях Каратеодори
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 159
EP  - 171
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a11/
LA  - ru
ID  - TIMM_2008_14_4_a11
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T Ломаные Эйлера и временные шкалы в условиях Каратеодори
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 159-171
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a11/
%G ru
%F TIMM_2008_14_4_a11
D. V. Khlopin. Ломаные Эйлера и временные шкалы в условиях Каратеодори. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 159-171. http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a11/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. T. 1. Obschaya teoriya, v 3-kh t, IL, M., 1962, 895 pp.

[2] Zhukovskii E. S., “O parametricheskom zadanii resheniya differentsialnogo uravneniya i ego priblizhennom postroenii”, Izv. vuzov. Ser. Matematika, 1996, no. 4, 31–34 | MR

[3] Panasyuk A. I., “Svoistva reshenii obobschennykh differentsialnykh uravnenii approksimatsion- nogo tipa v $\mathbb R^m$”, Dif. uravneniya, 27:12 (1991), 2065–2076 | MR

[4] Petukhov V. R., “Issledovanie odnoi sistemy differentsialno-funktsionalnykh uravnenii”, Dif. uravneniya, 4:5 (1968), 875–880

[5] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986, 296 pp. | MR | Zbl

[6] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 216 pp. | MR

[7] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo Mosk. un-ta, M., 1993, 334 pp. | MR | Zbl

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[9] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[10] Khlopin D. V., “Lomanye Eilera v sistemakh s usloviyami Karateodori”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, Ekaterinburg, 2007, 167–183

[11] Khlopin D. V., “Skhodimost lomanykh Eilera k resheniyam sistemy v usloviyakh Karateodori”, Problemy teoret. i prikl. matematiki, sb. tr. konf., Ekaterinburg, 2008 | Zbl

[12] Khlopin D. V., “Skhodimost lomanykh Eilera v usloviyakh Karateodori”, Vestn. Udmurt. un-ta. Ser. Matematika, 2008, no. 2, 163–164

[13] Artstein Z., “Continuous dependence on parameters: On the best possible results”, J. Diff. Eq., 19:2 (1975), 214–225 | DOI | MR | Zbl

[14] Averna D., Fiacca A., “On the Scorza Dragoni property”, Atti Sem. Mat. Fis. Univ. Modena, 33:2 (1984), 313–318 | MR | Zbl

[15] Averna D., Fiacca A., “Some results on theorems of G. Scorza Dragoni and L. Tibaldo in abstract spaces”, Riv. Mat. Univ. Parma, 12:4 (1986), 217–225 | MR | Zbl

[16] Bohner M., Peterson A. C., Dynamic equations on time scales. An introduction with applications, Birkhäuser, Boston, 2001, 358 pp. | MR | Zbl

[17] Cooke K. L., Wiener J., “A survey of differential equations with piecewise continuous arguments”, Delay differential equations and dynamical systems, Lecture Notes in Math., 1475, Springer, Berlin, 1991, 1–15 | MR

[18] Lakshmikantham V., Vatsala A. S., “Hybrid systems on the time scales”, J. Comp. Appl. Math., 141 (2002), 227–236 | DOI | MR

[19] Miriča S., “Feedback differential systems: approximate and limiting trajectories”, Studia Univ. Babeş-Bolyai Math., 49:3 (2004), 83–96 | MR | Zbl

[20] Nussbaum R. D., “A generalisation of the Ascoli theorem and an application to functional differential equations”, J. Math. Anal. Appl., 35:3 (1971), 600–610 | DOI | MR | Zbl