@article{TIMM_2008_14_3_a9,
author = {V. I. Ivanov and D. V. Chertova and Liu Yongping},
title = {The sharp {Jackson} inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {112--126},
year = {2008},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/}
}
TY - JOUR AU - V. I. Ivanov AU - D. V. Chertova AU - Liu Yongping TI - The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 112 EP - 126 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/ LA - ru ID - TIMM_2008_14_3_a9 ER -
%0 Journal Article %A V. I. Ivanov %A D. V. Chertova %A Liu Yongping %T The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight %J Trudy Instituta matematiki i mehaniki %D 2008 %P 112-126 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/ %G ru %F TIMM_2008_14_3_a9
V. I. Ivanov; D. V. Chertova; Liu Yongping. The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 112-126. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/
[1] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970, 671 pp. | MR | Zbl
[2] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 528 pp. | MR
[3] Abilov V. A., Abilov F. V., “Priblizhenie funktsii summami Fure–Besselya”, Izv. vuzov. Ser. Matematika, 2001, no. 8, 3–9 | MR | Zbl
[4] Liu Y., “Best $L_2$-approximation of functions on [0,1] with the weight $x^{2\nu+1}$”, Tr. mezhdunar. letn. mat. shk. S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 180–190
[5] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN SSSR, 88, 1967, 71–74
[6] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R_+)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, 1998, 183–198 | MR | Zbl
[7] Moskovskii A. V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p\lambda}(\mathbb R_+)$”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 3:1 (1997), 44–70 | MR
[8] Chertova D. V., “Teorema Dzheksona v prostranstve $L_2$ na pryamoi so stepennym vesom”, Materialy 8-i mezhdunar. Kazan. letn. nauch. shk.-konf., T. 35, Izd-vo Kazan. mat. o-va, Kazan, 2007, 267–268
[9] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973, 312 pp. | MR | Zbl
[10] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949, 800 pp.
[11] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.
[12] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR
[13] Rustamov Kh. P., “O priblizhenii funktsii na sfere”, Izv. RAN. Ser. mat., 57:5 (1993), 127–148 | MR | Zbl