The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 112-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the space $L_2$ on the segment $[-1,1]$ with the power weight $|x|^{2\lambda+1}$, $\lambda\ge-1/2$ , we define a complete orthogonal system, the value of the best approximation with respect to this system, the operator of generalized shift, and the modulus of continuity and prove the sharp Jackson inequality.
@article{TIMM_2008_14_3_a9,
     author = {V. I. Ivanov and D. V. Chertova and Liu Yongping},
     title = {The sharp {Jackson} inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--126},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/}
}
TY  - JOUR
AU  - V. I. Ivanov
AU  - D. V. Chertova
AU  - Liu Yongping
TI  - The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 112
EP  - 126
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/
LA  - ru
ID  - TIMM_2008_14_3_a9
ER  - 
%0 Journal Article
%A V. I. Ivanov
%A D. V. Chertova
%A Liu Yongping
%T The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 112-126
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/
%G ru
%F TIMM_2008_14_3_a9
V. I. Ivanov; D. V. Chertova; Liu Yongping. The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 112-126. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/

[1] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970, 671 pp. | MR | Zbl

[2] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 528 pp. | MR

[3] Abilov V. A., Abilov F. V., “Priblizhenie funktsii summami Fure–Besselya”, Izv. vuzov. Ser. Matematika, 2001, no. 8, 3–9 | MR | Zbl

[4] Liu Y., “Best $L_2$-approximation of functions on [0,1] with the weight $x^{2\nu+1}$”, Tr. mezhdunar. letn. mat. shk. S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 180–190

[5] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN SSSR, 88, 1967, 71–74

[6] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R_+)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, 1998, 183–198 | MR | Zbl

[7] Moskovskii A. V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p\lambda}(\mathbb R_+)$”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 3:1 (1997), 44–70 | MR

[8] Chertova D. V., “Teorema Dzheksona v prostranstve $L_2$ na pryamoi so stepennym vesom”, Materialy 8-i mezhdunar. Kazan. letn. nauch. shk.-konf., T. 35, Izd-vo Kazan. mat. o-va, Kazan, 2007, 267–268

[9] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973, 312 pp. | MR | Zbl

[10] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949, 800 pp.

[11] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[12] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR

[13] Rustamov Kh. P., “O priblizhenii funktsii na sfere”, Izv. RAN. Ser. mat., 57:5 (1993), 127–148 | MR | Zbl