The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 112-126

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_2$ on the segment $[-1,1]$ with the power weight $|x|^{2\lambda+1}$, $\lambda\ge-1/2$ , we define a complete orthogonal system, the value of the best approximation with respect to this system, the operator of generalized shift, and the modulus of continuity and prove the sharp Jackson inequality.
@article{TIMM_2008_14_3_a9,
     author = {V. I. Ivanov and D. V. Chertova and Liu Yongping},
     title = {The sharp {Jackson} inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--126},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/}
}
TY  - JOUR
AU  - V. I. Ivanov
AU  - D. V. Chertova
AU  - Liu Yongping
TI  - The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 112
EP  - 126
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/
LA  - ru
ID  - TIMM_2008_14_3_a9
ER  - 
%0 Journal Article
%A V. I. Ivanov
%A D. V. Chertova
%A Liu Yongping
%T The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 112-126
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/
%G ru
%F TIMM_2008_14_3_a9
V. I. Ivanov; D. V. Chertova; Liu Yongping. The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 112-126. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a9/