Longitudinal-vortex unit vector fields from the class of axially symmetric fields
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 92-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we construct unit vector fields belonging to the class of smooth axially symmetric fields that are longitudinal-vortex in the whole space $\mathbb R^3$.
@article{TIMM_2008_14_3_a7,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {Longitudinal-vortex unit vector fields from the class of axially symmetric fields},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {92--98},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a7/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Longitudinal-vortex unit vector fields from the class of axially symmetric fields
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 92
EP  - 98
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a7/
LA  - ru
ID  - TIMM_2008_14_3_a7
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Longitudinal-vortex unit vector fields from the class of axially symmetric fields
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 92-98
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a7/
%G ru
%F TIMM_2008_14_3_a7
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. Longitudinal-vortex unit vector fields from the class of axially symmetric fields. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 92-98. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a7/

[1] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “K postroeniyu edinichnykh prodolno vikhrevykh vektornykh polei s pomoschyu gladkikh otobrazhenii”, Tr. In-ta matematiki i mekhaniki, 14, no. 3, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2008, 82–91