On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 82-91

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution is given for the problem of constructing a unit vector field collinear to the field of its curl. The solution is based on the use of a suitably parametrized orthogonal transformation of a unit vector field that is potential in $\mathbb R^3$. The result is stated in the theorem that contains the recipe for constructing the required field.
@article{TIMM_2008_14_3_a6,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 82
EP  - 91
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/
LA  - ru
ID  - TIMM_2008_14_3_a6
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 82-91
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/
%G ru
%F TIMM_2008_14_3_a6
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 82-91. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/