On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 82-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution is given for the problem of constructing a unit vector field collinear to the field of its curl. The solution is based on the use of a suitably parametrized orthogonal transformation of a unit vector field that is potential in $\mathbb R^3$. The result is stated in the theorem that contains the recipe for constructing the required field.
@article{TIMM_2008_14_3_a6,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--91},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 82
EP  - 91
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/
LA  - ru
ID  - TIMM_2008_14_3_a6
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 82-91
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/
%G ru
%F TIMM_2008_14_3_a6
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 82-91. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/

[1] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “Sposob postroeniya vektornykh polei s opredelennymi vikhrevymi svoistvami s pomoschyu gladkikh otobrazhenii”, Materialy Ufim. mezhdunar. mat. konf., posvyaschennoi pamyati A. F. Leonteva, T. 1, IMVTs, Ufa, 2007, 48–49

[2] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990, 208 pp. | MR

[3] Nikolskii S. M., Kurs matematicheskogo analiza: uch. dlya fiz.-mat. spets. vuzov, 4-e izd., pererab. i dop. T. 1, Nauka, M., 1990, 528 pp. | MR