On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 82-91
Cet article a éte moissonné depuis la source Math-Net.Ru
A solution is given for the problem of constructing a unit vector field collinear to the field of its curl. The solution is based on the use of a suitably parametrized orthogonal transformation of a unit vector field that is potential in $\mathbb R^3$. The result is stated in the theorem that contains the recipe for constructing the required field.
@article{TIMM_2008_14_3_a6,
author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
title = {On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {82--91},
year = {2008},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/}
}
TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 82 EP - 91 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/ LA - ru ID - TIMM_2008_14_3_a6 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings %J Trudy Instituta matematiki i mehaniki %D 2008 %P 82-91 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/ %G ru %F TIMM_2008_14_3_a6
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 82-91. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a6/
[1] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “Sposob postroeniya vektornykh polei s opredelennymi vikhrevymi svoistvami s pomoschyu gladkikh otobrazhenii”, Materialy Ufim. mezhdunar. mat. konf., posvyaschennoi pamyati A. F. Leonteva, T. 1, IMVTs, Ufa, 2007, 48–49
[2] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990, 208 pp. | MR
[3] Nikolskii S. M., Kurs matematicheskogo analiza: uch. dlya fiz.-mat. spets. vuzov, 4-e izd., pererab. i dop. T. 1, Nauka, M., 1990, 528 pp. | MR