On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 58-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the author's previous paper, the hypothesis that the alternating groups $A_n$ have no pairs of semiproportional irreducible characters is reduced to a hypothesis concerning the problem of describing the pairs of irreducible characters of the symmetric group $S_n$ that are semiproportional on one of the sets $A_n$ or $S_n\setminus A_n$. In this hypothesis, properties of such a pair of characters are expressed in terms of Young's diagrams corresponding to these characters. The theorem proved in this paper allows one to exclude from consideration some stages of the verification of this hypothesis.
@article{TIMM_2008_14_3_a4,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n${.~II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {58--68},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a4/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 58
EP  - 68
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a4/
LA  - ru
ID  - TIMM_2008_14_3_a4
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. II
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 58-68
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a4/
%G ru
%F TIMM_2008_14_3_a4
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 58-68. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a4/

[1] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[2] Belonogov V. A., “K gipoteze o poluproportsionalnykh kharakterakh”, Sib. mat. zhurn., 46:2 (2005), 299–314 | MR | Zbl

[3] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 143–163 | MR

[4] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$”, Algebra i logika, 47:2 (2008), 135–156 | MR | Zbl

[5] Belonogov V. A., “Diagrammy Yunga bez kryukov dliny 4 i kharaktery gruppy $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 30–40

[6] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 11–43

[7] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 13–32

[8] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[9] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR

[10] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[11] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982, 214 pp. | MR

[12] Belonogov V. A., “O diagrammakh Yunga pary neprivodimykh kharakterov $S_n$, ravnokornevykh na $S_n^\varepsilon$”, Sib. mat. zhurn., 49:5 (2008), 992–1006 | MR