On some interpolation third-degree polynomials on a three-dimensional simplex
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 43-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The interpolation problem under consideration is connected with the finite element method in $\mathbb R^3$. In most cases, when finite elements are constructed by means of the partition of a given domain in $\mathbb R^2$ into triangles and interpolation of the Hermite or Birkhoff type, the sine of the smallest angle of the triangle appears in the denominators of the error estimates for the derivatives. In the case of $\mathbb R^m$ ($m\ge3$), the ratio of the radius of the inscribed sphere to the diameter of the simplex is used as an analog of this characteristic. This makes it necessary to impose constraints on the triangulation of the domain. The recent investigations by a number of authors reveal that, in the case of triangles, the smallest angle in the error estimates for some interpolation processes can be replaced by the middle or the greatest one, which makes it possible to weaken the triangulation requirements. There are fewer works of this kind for $m\ge3$, and the error estimates are given there in terms of other characteristics of the simplex. In this paper, methods are suggested for constructing an interpolation third-degree polynomial on a simplex in $\mathbb R^3$. These methods allow one to obtain estimates in terms of a new characteristic of a rather simple form and weaken the triangulation requirements.
@article{TIMM_2008_14_3_a3,
     author = {N. V. Baidakova},
     title = {On some interpolation third-degree polynomials on a~three-dimensional simplex},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--57},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a3/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - On some interpolation third-degree polynomials on a three-dimensional simplex
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 43
EP  - 57
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a3/
LA  - ru
ID  - TIMM_2008_14_3_a3
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T On some interpolation third-degree polynomials on a three-dimensional simplex
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 43-57
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a3/
%G ru
%F TIMM_2008_14_3_a3
N. V. Baidakova. On some interpolation third-degree polynomials on a three-dimensional simplex. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 43-57. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a3/

[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rat. Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[2] Ženišek A., “Interpolation polynomials on the triangle”, Numer. Math., 15 (1970), 283–296 | DOI | MR

[3] Bramble J. H., Zlamal M., “Triangular elements in the finite element method”, Math. Comp., 24:112 (1970), 809–820 | DOI | MR

[4] Zlamal M., Ženišek A., “Mathematical aspect of the finite element method”, Technical, physical and mathematical principles of the finite element method, eds. V. Kolar et al., Acad. VED, Praha, 1971, 15–39

[5] Synge J. L., The hypercircle in mathematical physics, Cambridge Univ. Press, New York, 1957, 424 pp. | MR | Zbl

[6] Babuška I., Aziz A. K., “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI | MR | Zbl

[7] Subbotin Yu. N., “Mnogomernaya kusochno polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, ed. A. Yu. Kuznetsov, VTs SO AN, Novosibirsk, 1981, 148–153 | MR

[8] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN, 189, 1989, 117–137 | MR

[9] Subbotin Yu. N., “Pogreshnost approksimatsii interpolyatsionnymi mnogochlenami malykh stepenei na $n$-simpleksakh”, Mat. zametki, 48:4 (1990), 88–99 | MR | Zbl

[10] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, 1992, 110–119 | MR | Zbl

[11] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Russ. J. Numer. Anal. Math. Modelling, 14:2 (1999), 87–107 | MR | Zbl

[12] Latypova N. V., “Error estimates for approximation by polynomials of degree $4k+3$ on the triangle”, Proc. Steklov Inst. Math., Suppl. 1, 2002, S190–S213 | MR

[13] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestn. Udmurt. un-ta. Ser. Matematika, 2003, 3–10

[14] Ženišek A., “Maximum-angle condition and triangular finite elements of Hermite type”, Math. Comp., 64:211 (1995), 929–941 | DOI | MR

[15] Subbotin Yu. N., “A new cubic element in the FEM”, Proc. Steklov Inst. Math., Suppl. 2, 2005, S176–S187 | MR

[16] Baidakova N. V., “A method of Hermite interpolation by polynomials of the third degree on a triangle”, Proc. Steklov Inst. Math., Suppl. 2, 2005, S49–S55 | MR

[17] Ženišek A., Hoderova-Zlamalova J., “Semiregular Hermite tetrahedral finite elements”, Appl. of Math., 46:4 (2001), 295–315 | DOI | MR

[18] Kupriyanova Yu. V. (Matveeva Yu. V.), “Ob odnoi teoreme iz teorii splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 48:2 (2008), 206–211 | MR | Zbl

[19] Matveeva Yu. V., “Splain-approksimatsiya v $\mathbb R^m$”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. XIV Sarat. zimnei shk., posvyaschennoi pamyati akad. P. L. Ulyanova, Izd-vo Sarat. un-ta, Saratov, 2008, 111–113

[20] Matveeva Yu. V., “Ob ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike s ispolzovaniem smeshannykh proizvodnykh”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 7:1 (2007), 23–27 | MR