Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 38-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{p_n(t)\}_{n=0}^\infty$ be a system of algebraic polynomials orthonormal on the segment $[-1,1]$ with a weight $p(t)$; let $\{x_{n,\nu}^{(p)}\}_{\nu=1}^n$ be zeros of a polynomial $p_n(t)$ ($x_{n,\nu}^{(p)}=\cos\theta_{n,\nu}^{(p)}$;
$0\theta_{n,1}^{(p)}\theta_{n,2}^{(p)}\dots\theta_{n,n}^{(p)}\pi$). It is known that, for a wide class of weights $p(t)$ containing the Jacobi weight, the quantities $\theta_{n,1}^{(p)}$ and $1-x_{n,1}^{(p)}$ coincide in order with $n^{-1}$ and $n^{-2}$, respectively. In the present paper, we prove that, if the weight $p(t)$ has the form $p(t)=4(1-t^2)^{-1}\{\ln^2[(1+t)/(1-t)]+\pi^2\}^{-1}$, then the following asymptotic formulas are valid as $n\to\infty$:
$$
\theta_{n,1}^{(p)}=\frac{\sqrt2}{n\sqrt{\ln(n+1)}}\biggl[1+O\biggl(\frac1{\ln(n+1)}\biggr)\biggr],\quad x_{n,1}^{(p)}=1-\frac1{n^2\ln(n+1)}+O\biggl(\frac1{\ln(n+1)}\biggr).
$$
@article{TIMM_2008_14_3_a2,
author = {V. M. Badkov},
title = {Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {38--42},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a2/}
}
TY - JOUR AU - V. M. Badkov TI - Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 38 EP - 42 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a2/ LA - ru ID - TIMM_2008_14_3_a2 ER -
%0 Journal Article %A V. M. Badkov %T Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight %J Trudy Instituta matematiki i mehaniki %D 2008 %P 38-42 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a2/ %G ru %F TIMM_2008_14_3_a2
V. M. Badkov. Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 38-42. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a2/