Interpolating-orthogonal wavelet systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 153-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Based upon Meyer wavelets, new systems of periodic wavelets and wavelets on the whole axis are constructed; these systems are orthogonal and interpolating simultaneously. Estimates of the errors of approximation of different classes of smooth functions by these wavelets are obtained.
@article{TIMM_2008_14_3_a13,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Interpolating-orthogonal wavelet systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--161},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a13/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Interpolating-orthogonal wavelet systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 153
EP  - 161
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a13/
LA  - ru
ID  - TIMM_2008_14_3_a13
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Interpolating-orthogonal wavelet systems
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 153-161
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a13/
%G ru
%F TIMM_2008_14_3_a13
Yu. N. Subbotin; N. I. Chernykh. Interpolating-orthogonal wavelet systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 153-161. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a13/

[1] Meyer Y., Ondelettes, Hermann, Paris, 1990, 215 pp. | MR

[2] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyar. i khaotich. dinamika”, Izhevsk, 2001, 464 pp.

[3] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | Zbl

[4] Subbotin Yu. N., “O gladkom bazise v $C[0,2\pi]$”, Tr. tsentr. zonalnogo ob'edineniya mat. kafedr, Vyp. 1, Kalinin, 1970, 141–144 | MR

[5] Subbotin Yu. N., “Priblizhenie splainami i gladkie bazisy v $C[0,2\pi]$”, Mat. zametki, 12:1 (1972), 43–51 | MR | Zbl

[6] Subbotin Yu. N., “O kusochno-polinomialnoi interpolyatsii”, Mat. zametki, 1:1 (1967), 63–70 | MR | Zbl

[7] Donoho D. L., Interpolating wavelet transforms, preprint, Stanford Univ., Stanford, 1992, 54 pp. | MR

[8] Evangelista G., “Wavelet transforms and wave digital filters”, Proc. of the Internat. Conf. on Wavelets, Marseille, 1989, 396–407 | MR

[9] Novikov I. Ya., “Ondeletty I. Meiera – optimalnyi bazis v $C[0,2\pi]$”, Mat. zametki, 52:5 (1992), 88–92 | MR | Zbl

[10] Offin D., Oskolkov K., “A note on orthonormal polynomial bases and wavelets”, Constr. Approx., 9 (1993), 319–325 | DOI | MR | Zbl

[11] Subbotin Yu. N., Chernykh N. I., “Bazisy vspleskov v prostranstvakh analiticheskikh funktsii”, Tr. MIAN, 219, 1997, 340–355 | MR | Zbl

[12] Garkavi A. L., “O sovmestnom priblizhenii periodicheskoi funktsii i ee proizvodnykh trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. mat., 24:1 (1960), 103–128 | MR | Zbl

[13] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | Zbl

[14] Timan A. F., “K voprosu ob odnovremennoi approksimatsii funktsii i ee proizvodnykh na vsei chislovoi osi”, Izv. AN SSSR. Ser. mat., 24:3 (1960), 421–430 | MR

[15] Tanana D. B., “Sistemy vspleskov tipa I. Meiera v prostranstvakh $L_p(\mathbb R)$”, Izv. Ural. un-ta. Ser. Matematika i mekhanika, 44:9 (2006), 140–151 | MR