On the estimate of the uniform deviation from the class of functions with bounded third derivative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 145-152

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the uniform approximation of a continuous function on a closed interval by a class of functions with a uniformly bounded third derivative is considered. It is shown that the value of best approximation of a function by this class cannot be estimated linearly in terms of its third-order modulus of continuity. At the same time, such estimates exist for classes with bounded first or second derivatives.
@article{TIMM_2008_14_3_a12,
     author = {A. V. Mironenko},
     title = {On the estimate of the uniform deviation from the class of functions with bounded third derivative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a12/}
}
TY  - JOUR
AU  - A. V. Mironenko
TI  - On the estimate of the uniform deviation from the class of functions with bounded third derivative
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 145
EP  - 152
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a12/
LA  - ru
ID  - TIMM_2008_14_3_a12
ER  - 
%0 Journal Article
%A A. V. Mironenko
%T On the estimate of the uniform deviation from the class of functions with bounded third derivative
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 145-152
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a12/
%G ru
%F TIMM_2008_14_3_a12
A. V. Mironenko. On the estimate of the uniform deviation from the class of functions with bounded third derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 145-152. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a12/