Integral approximation of the characteristic function of an interval by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 19-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the value $E_{n-1}(\chi_h)_L$ of the best integral approximation of the characteristic function $\chi_h$ of an interval $(-h,h)$ on the period $[-\pi,\pi)$ by trigonometric polynomials of degree at most $n-1$ is expressed in terms of zeros of the Bernstein function $\cos\{[nt-\arccos2q-(1+q^2)\cos t]/(1+q^2-2q\cos t)\}$, $t\in[0,\pi]$, $q\in(-1,1)$. Here, the parameters $q$, $h$, and $n$ are connected in a special way; in particular, $q=\sec h-\operatorname{tg} h$ при $h=\pi/n$.
@article{TIMM_2008_14_3_a1,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {Integral approximation of the characteristic function of an interval by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {19--37},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - Integral approximation of the characteristic function of an interval by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 19
EP  - 37
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/
LA  - ru
ID  - TIMM_2008_14_3_a1
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T Integral approximation of the characteristic function of an interval by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 19-37
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/
%G ru
%F TIMM_2008_14_3_a1
A. G. Babenko; Yu. V. Kryakin. Integral approximation of the characteristic function of an interval by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 19-37. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/