Integral approximation of the characteristic function of an interval by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 19-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that the value $E_{n-1}(\chi_h)_L$ of the best integral approximation of the characteristic function $\chi_h$ of an interval $(-h,h)$ on the period $[-\pi,\pi)$ by trigonometric polynomials of degree at most $n-1$ is expressed in terms of zeros of the Bernstein function $\cos\{[nt-\arccos2q-(1+q^2)\cos t]/(1+q^2-2q\cos t)\}$, $t\in[0,\pi]$, $q\in(-1,1)$. Here, the parameters $q$, $h$, and $n$ are connected in a special way; in particular, $q=\sec h-\operatorname{tg} h$ при $h=\pi/n$.
@article{TIMM_2008_14_3_a1,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {Integral approximation of the characteristic function of an interval by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {19--37},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - Integral approximation of the characteristic function of an interval by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 19
EP  - 37
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/
LA  - ru
ID  - TIMM_2008_14_3_a1
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T Integral approximation of the characteristic function of an interval by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 19-37
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/
%G ru
%F TIMM_2008_14_3_a1
A. G. Babenko; Yu. V. Kryakin. Integral approximation of the characteristic function of an interval by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 19-37. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp. | MR

[2] Babenko A. G., Kryakin Yu. V., “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 27–56 | MR

[3] Bernshtein S.N., Sobranie sochinenii. T. 1. Konstruktivnaya teoriya funktsii (1905–1930), AN SSSR, M., 1952, 581 pp.

[4] Galeev E. M., “Zadacha Zolotareva v metrike $L_1([-1,1])$”, Mat. zametki, 17:1 (1975), 13–20 | MR | Zbl

[5] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (trete soobsch.)”, Sib. zhurn. vychisl. matematiki, 6:1 (2003), 37–57

[6] Geronimus Ya. L., “Ob odnoi ekstremalnoi zadache Chebysheva”, Izv. AN SSSR. Ser. mat., 2:4 (1938), 445–456

[7] Geronimus Ya. L., “Ob odnoi zadache F. Riesz'a i obobschennoi zadache Chebysheva–Korkina–Zolotareva”, Izv. AN SSSR. Ser. mat., 3:3 (1939), 279–288

[8] Grave D. A., Traktat po algebraicheskomu analizu. T. 1. Nachala nauki, Izd-vo AN USSR, Kiev, 1938, 208 pp.

[9] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | MR | Zbl

[10] Zolotarev E. I., “Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee otklonyayuschikhsya ot nulya”, Poln. sobr. soch., Vyp. 2, Izd-vo AN SSSR, L., 1932, 1–59

[11] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR

[12] Korkin A. N., Sochineniya, T. 1, Izd-vo S.-Peterb. un-t, SPb., 1911

[13] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M.–L., 1948, 411 pp. | MR

[14] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949, 688 pp. | MR

[15] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10:3 (1946), 207–256

[16] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983, 406 pp. | MR

[17] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[18] Chebyshev P. L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Izbr. tr., Izd-vo AN SSSR, M., 1955, 611–648

[19] Chebyshev P. L., O polinomakh, nailuchshe predstavlyayuschikh znacheniya prosteishikh drobnykh funktsii pri velichinakh peremennoi, zaklyuchayuschikhsya mezhdu dvumya dannymi predelami. T. 3. Matematicheskii analiz, Poln. sobr.soch. v 5 t., Izd-vo AN SSSR, M.–L., 1948., 363–372

[20] Chebyshev P. L., O funktsiyakh, malo udalyayuschikhsya ot nulya pri nekotorykh velichinakh peremennoi: poln. sobr. soch., T. 3, 1948, 108–127

[21] DeVore R. A., Lorentz G. G., Constructive approximation, Springer-Verlag, Berlin, 1993, 446 pp. | MR

[22] Eremenko A., Yuditskii P., “Uniform approximation of $\mathrm{sgn}x$ by polynomials and entire functions”, J. Anal. Math., 101 (2007), 313–324 | DOI | MR | Zbl

[23] Geronimus J., “Sur quelques propriétés extrémales polynômes, dont les coefficients premiers sont donnés”, Soobsch. Khark. mat. o-va. Ser. 4, 12 (1935), 49–59 | Zbl

[24] Geronimus J., “On some extremal properties of polynomials”, Ann. Math., 37:2 (1936), 483–517 | DOI | MR

[25] Meinardus G., Approximation von Funktionen und ihre numerische Behandlung, Springer, Berlin, 1964, 180 pp. | MR

[26] Peherstorfer F., “Trigonometric polynomials approximation in $L^1$-norm”, Math. Z., 169:3 (1979), 261–269 | DOI | MR

[27] Peherstorfer F., “On the representation of extremal functions in the $L^1$-norm”, J. Approx. Theory, 27:1 (1979), 61–75 | DOI | MR | Zbl

[28] Vaaler J. D., “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (New Series), 12:2 (1985), 183–216 | DOI | MR | Zbl