Integral approximation of the characteristic function of an interval by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 19-37
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the value $E_{n-1}(\chi_h)_L$ of the best integral approximation of the characteristic function $\chi_h$ of an interval $(-h,h)$ on the period $[-\pi,\pi)$ by trigonometric polynomials of degree at most $n-1$ is expressed in terms of zeros of the Bernstein function $\cos\{[nt-\arccos2q-(1+q^2)\cos t]/(1+q^2-2q\cos t)\}$, $t\in[0,\pi]$, $q\in(-1,1)$. Here, the parameters $q$, $h$, and $n$ are connected in a special way; in particular, $q=\sec h-\operatorname{tg} h$ при $h=\pi/n$.
@article{TIMM_2008_14_3_a1,
author = {A. G. Babenko and Yu. V. Kryakin},
title = {Integral approximation of the characteristic function of an interval by trigonometric polynomials},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {19--37},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/}
}
TY - JOUR AU - A. G. Babenko AU - Yu. V. Kryakin TI - Integral approximation of the characteristic function of an interval by trigonometric polynomials JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 19 EP - 37 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/ LA - ru ID - TIMM_2008_14_3_a1 ER -
%0 Journal Article %A A. G. Babenko %A Yu. V. Kryakin %T Integral approximation of the characteristic function of an interval by trigonometric polynomials %J Trudy Instituta matematiki i mehaniki %D 2008 %P 19-37 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/ %G ru %F TIMM_2008_14_3_a1
A. G. Babenko; Yu. V. Kryakin. Integral approximation of the characteristic function of an interval by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 19-37. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a1/