Off-line detection of a quasi-periodically recurring fragment in a numerical sequence
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 81-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers a nontraditional–combinatorial–approach to solving the problem of a posteriori (off-line) noise-proof detection of a recurring fragment in a numerical sequence. Results are presented concerning the complexity, classification, and justification of algorithms for solving discrete extremal problems to which, within the combinatorial approach, some possible variants of this problem are reduced in the case when repetitions are quasiperiodic and the noise is additive.
@article{TIMM_2008_14_2_a8,
     author = {A. V. Kel'manov},
     title = {Off-line detection of a~quasi-periodically recurring fragment in a~numerical sequence},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {81--88},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/}
}
TY  - JOUR
AU  - A. V. Kel'manov
TI  - Off-line detection of a quasi-periodically recurring fragment in a numerical sequence
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 81
EP  - 88
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/
LA  - ru
ID  - TIMM_2008_14_2_a8
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%T Off-line detection of a quasi-periodically recurring fragment in a numerical sequence
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 81-88
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/
%G ru
%F TIMM_2008_14_2_a8
A. V. Kel'manov. Off-line detection of a quasi-periodically recurring fragment in a numerical sequence. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/

[1] Kel'manov A. V., Jeon B., “A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Transactions on Signal Processing, 52:3 (2004), 1–12 | DOI | MR

[2] Wald A., Sequential analysis, Wiley, New York, 1947 | MR | Zbl

[3] Van Trees H. L., Detection, estimation, and modulation theory, Part I, Wiley, New York, 1968

[4] Helstrom C. W., Elements of signal detection and estimation, Prentice-Hall, New York, 1979

[5] Anderson B. D. and Moore J. D., Optimal filtering, Prentice-Hall, New York, 1995

[6] Nikiforov I. V., Posledovatelnoe obnaruzhenie izmeneniya svoistv vremennykh ryadov, Nauka, M., 1983 | MR

[7] Zhiglyavskii A. A., Kraskovskii A. E., Obnaruzhenie razladki sluchainykh protsessov v zadachakh radiotekhniki, LGU, L., 1988

[8] M. Bassvil, A. Vilski, A. Banvenist i dr. (red.), Obnaruzhenie izmeneniya svoistv signalov i dinamicheskikh sistem, Mir, M., 1989

[9] Kligene N., Telksnis L., “Metody obnaruzheniya momentov izmeneniya svoistv sluchainykh protsessov”, Avtomatika i telemekhanika, 1983, no. 10, 5–56 | MR | Zbl

[10] Torgovitskii I. Sh., “Metody opredeleniya momenta izmeneniya veroyatnostnykh kharakteristik sluchainykh velichin”, Zarubezhnaya radioelektronika, 1976, no. 1, 3–52

[11] Darkhovskii B. S., “O dvukh zadachakh otsenivaniya momentov izmeneniya veroyatnostnykh kharakteristik sluchainoi posledovatelnosti”, Teoriya veroyatnostei i ee primeneniya, 29:3 (1984), 464–473 | MR

[12] Darkhovskii B. S., “Neparametricheskii metod otsenivaniya intervalov odnorodnosti sluchainoi posledovatelnosti”, Teoriya veroyatnostei i ee primeneniya, 30:4 (1985), 795–799 | MR

[13] Brodskii B. E., Darkhovskii B. S., “Sravnitelnyi analiz nekotorykh neparametricheskikh metodov skoreishego obnaruzheniya momenta “razladki” sluchainoi posledovatelnosti”, Teoriya veroyatnostei i ee primeneniya, 35:4 (1990), 655–668 | MR

[14] Darkhovskii B. S., “Retrospektivnoe obnaruzhenie “razladki” v nekotorykh modelyakh regressionnogo tipa”, Teoriya veroyatnostei i ee primeneniya, 40:4 (1995), 898–903 | MR

[15] Gini F., Farina A., Greco M., “Selected list of references on radar signal processing”, IEEE Trans. Aerospace and Electronic Systems, 37:1 (2001), 329–359 | DOI | MR

[16] Kelmanov A. V., Mikhailova L. V., “Sovmestnoe obnaruzhenie v kvaziperiodicheskoi posledovatelnosti zadannogo chisla fragmentov iz etalonnogo nabora i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zhurn. vychisl. matematiki i mat. fiziki, 46:1 (2006), 172–189 | MR

[17] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 41:5 (2001), 807–820 | MR

[18] Kel'manov A. V., Khamidullin S. A., Okol'nishnikova L. V., “A posteriori detection of identical subsequences in a quasiperiodic sequence”, Pattern Recognition and Image Analysis, 12:4 (2002), 438–447 | MR

[19] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1 (2006), 55–74 | MR

[20] Baburin A. E., Gimadi E. Kh., Glebov N. I., Pyatkin A. V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskr. analiz i issledovanie operatsii. Ser. 2, 14:1 (2007), 32–42 | MR

[21] Kelmanov A. V., “O nekotorykh polinomialno razreshimykh i NP-trudnykh zadachakh analiza i raspoznavaniya posledovatelnostei s kvaziperiodicheskoi strukturoi”, Matematicheskie metody raspoznavaniya obrazov, Sb. dokl. XIII vseros. konf., MAKS Press, M., 2007, 261–264

[22] Garey M. R., Johnson D. S., Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl