Off-line detection of a~quasi-periodically recurring fragment in a~numerical sequence
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 81-88
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers a nontraditional–combinatorial–approach to solving the problem of a posteriori (off-line) noise-proof detection of a recurring fragment in a numerical sequence. Results are presented concerning the complexity, classification, and justification of algorithms for solving discrete extremal problems to which, within the combinatorial approach, some possible variants of this problem are reduced in the case when repetitions are quasiperiodic and the noise is additive.
@article{TIMM_2008_14_2_a8,
author = {A. V. Kel'manov},
title = {Off-line detection of a~quasi-periodically recurring fragment in a~numerical sequence},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {81--88},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/}
}
TY - JOUR AU - A. V. Kel'manov TI - Off-line detection of a~quasi-periodically recurring fragment in a~numerical sequence JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 81 EP - 88 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/ LA - ru ID - TIMM_2008_14_2_a8 ER -
A. V. Kel'manov. Off-line detection of a~quasi-periodically recurring fragment in a~numerical sequence. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a8/