One approach to solving a discrete production planning problem with interval data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 48-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we develop an approach to solving integer programming problems with interval data based on using the possibilities of varying the relaxation set of the problem. This is illustrated by means of an $L$-class enumeration algorithm for solving a dicrete production planning problem. We describe the algorithm and a number of its modifications and present results of a computational experiment for families of problems from the OR Library and with randomly generated initial data. This approach is also applied to obtain approximate solutions of the mentioned problem in its conventional setting.
@article{TIMM_2008_14_2_a5,
     author = {M. V. Devyaterikova and A. A. Kolokolov and A. P. Kolosov},
     title = {One approach to solving a~discrete production planning problem with interval data},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--57},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a5/}
}
TY  - JOUR
AU  - M. V. Devyaterikova
AU  - A. A. Kolokolov
AU  - A. P. Kolosov
TI  - One approach to solving a discrete production planning problem with interval data
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 48
EP  - 57
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a5/
LA  - ru
ID  - TIMM_2008_14_2_a5
ER  - 
%0 Journal Article
%A M. V. Devyaterikova
%A A. A. Kolokolov
%A A. P. Kolosov
%T One approach to solving a discrete production planning problem with interval data
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 48-57
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a5/
%G ru
%F TIMM_2008_14_2_a5
M. V. Devyaterikova; A. A. Kolokolov; A. P. Kolosov. One approach to solving a discrete production planning problem with interval data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 48-57. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a5/

[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR

[2] Devyaterikova M. V., Kolokolov A. A., Kolosov A. P., “Unimodulyarnye preobrazovaniya i nekotorye algoritmy tselochislennogo programmirovaniya”, Diskretnaya optimizatsiya i issledovanie operatsii, Materialy ross. konf. (Vladivostok, 7–14 sentyabrya 2007 g.), IM SO RAN, Novosibirsk, 2007, 124

[3] Kolokolov A. A., “Regulyarnye razbieniya i otsecheniya v tselochislennom programmirovanii”, Sib. zhurn. issledovaniya operatsii, 1994, no. 2, 18–39 | MR | Zbl

[4] Kolokolov A. A., Devyaterikova M. V., Algoritmy perebora $L$-klassov dlya zadachi o ryukzake s intervalnymi dannymi, Preprint, Izd-vo OmGU, Omsk, 2001 | MR

[5] Kolokolov A. A., Kolosov A. P., “Analiz nekotorykh algoritmov tselochislennogo programmirovaniya s ispolzovaniem $L$-razbieniya”, Inform. byull. Assotsiatsii mat. programmirovaniya, 2007, no. 11, 186

[6] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995 | Zbl

[7] Akcay Y., Xu S. H., “Joint inventory replenishment and component allocation optimization in an assemble-to-order system”, Management Science, 50 (2004), 99–116 | DOI

[8] Devyaterikova M. V., Kolokolov A. A., “$L$-class enumeration algorithms for some interval production planning problem”, Proc. of 12th IFAC symposium on information control problems in manufacturing INCOM'2006, 3, Elsevier Science, Saint-Etienne, 2006, 9–13

[9] Kouvelis P., Yu G., Robust discrete optimization and its applications, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[10] Lin E. Y.-H., “A bibliographical survey on some well-known non-standard knapsack problems”, INFOR, 36:4 (1998), 274–317

[11] Lu L. L., Chiu S. Y., Cox L. A., “Optimal project selection: stochastic knapsack with finite time horizon”, Operations Research, 50 (1999), 645–650 | Zbl

[12] Manjoub A., Mihelic J., Rapine C., Robic B., “$k$-center problem with uncertainty: flexible approach”, Proc. of discrete optimization methods in production and logistics (DOM-2004), Omsk, 2004, 75–80

[13] Martello S., Toth P., Knapsack problems: algorithms and computer implementations, Wiley, New York, 1990 | MR | Zbl

[14] http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html.