Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 23-32
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents a polynomial approximation algorithm $\mathcal A$ solving the problem of finding one and
two edge-disjoint Hamiltonian cycles (traveling salesman routes) of maximal weight in a complete weighted
undirected graph in multidimensional Euclidean space. The asymptotic optimality of the algorithm is established.
@article{TIMM_2008_14_2_a3,
author = {E. Kh. Gimadi},
title = {Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in {Euclidean} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {23--32},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/}
}
TY - JOUR AU - E. Kh. Gimadi TI - Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 23 EP - 32 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/ LA - ru ID - TIMM_2008_14_2_a3 ER -
%0 Journal Article %A E. Kh. Gimadi %T Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space %J Trudy Instituta matematiki i mehaniki %D 2008 %P 23-32 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/ %G ru %F TIMM_2008_14_2_a3
E. Kh. Gimadi. Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 23-32. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/