Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 23-32

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a polynomial approximation algorithm $\mathcal A$ solving the problem of finding one and two edge-disjoint Hamiltonian cycles (traveling salesman routes) of maximal weight in a complete weighted undirected graph in multidimensional Euclidean space. The asymptotic optimality of the algorithm is established.
@article{TIMM_2008_14_2_a3,
     author = {E. Kh. Gimadi},
     title = {Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in {Euclidean} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/}
}
TY  - JOUR
AU  - E. Kh. Gimadi
TI  - Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 23
EP  - 32
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/
LA  - ru
ID  - TIMM_2008_14_2_a3
ER  - 
%0 Journal Article
%A E. Kh. Gimadi
%T Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 23-32
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/
%G ru
%F TIMM_2008_14_2_a3
E. Kh. Gimadi. Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 23-32. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a3/