Minimax risk (regret) strategy for one class of control problems under dynamic disturbances
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 192-200

Voir la notice de l'article provenant de la source Math-Net.Ru

A controlled system under dynamic disturbances is considered. We formulate the problem of finding a strategy that is optimal in the sense of Savage's minimax risk (regret) criterion, list basic properties of such problems, and describe a construction of a strategy optimal in the above sense for one class of systems containing linear systems.
@article{TIMM_2008_14_2_a17,
     author = {D. A. Serkov},
     title = {Minimax risk (regret) strategy for one class of control problems under dynamic disturbances},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {192--200},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a17/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - Minimax risk (regret) strategy for one class of control problems under dynamic disturbances
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 192
EP  - 200
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a17/
LA  - ru
ID  - TIMM_2008_14_2_a17
ER  - 
%0 Journal Article
%A D. A. Serkov
%T Minimax risk (regret) strategy for one class of control problems under dynamic disturbances
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 192-200
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a17/
%G ru
%F TIMM_2008_14_2_a17
D. A. Serkov. Minimax risk (regret) strategy for one class of control problems under dynamic disturbances. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 192-200. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a17/