Construction of a minimax solution for an eikonal-type equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 182-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A formula for a minimax (generalized) solution of the Cauchy–Dirichlet problem for an eikonal-type equation is proved in the case of an isotropic medium providing that the edge set is closed; the boundary of the edge set can be nonsmooth. A technique of constructing a minimax solution is proposed that uses methods from the theory of singularities of differentiable mappings. The notion of a bisector, which is a representative of symmetry sets, is introduced. Special points of the set boundary–pseudovertices–are singled out and bisector branches corresponding to them are constructed; the solution suffers a “gradient catastrophe” on these branches. Having constructed the bisector, one can generate the evolution of wave fronts in smoothness domains of the generalized solution. The relation of the problem under consideration to one class of time-optimal dynamic control problems is shown. The efficiency of the developed approach is illustrated by examples of analytical and numerical construction of minimax solutions.
@article{TIMM_2008_14_2_a16,
     author = {P. D. Lebedev and A. A. Uspenskii and V. N. Ushakov},
     title = {Construction of a~minimax solution for an eikonal-type equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {182--191},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a16/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
AU  - V. N. Ushakov
TI  - Construction of a minimax solution for an eikonal-type equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 182
EP  - 191
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a16/
LA  - ru
ID  - TIMM_2008_14_2_a16
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%A V. N. Ushakov
%T Construction of a minimax solution for an eikonal-type equation
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 182-191
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a16/
%G ru
%F TIMM_2008_14_2_a16
P. D. Lebedev; A. A. Uspenskii; V. N. Ushakov. Construction of a minimax solution for an eikonal-type equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 182-191. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a16/

[1] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii., Institut kompyuternykh tekhnologii, M.–Izhevsk, 2003 | Zbl

[2] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I”, Mat. sb., 98(140):3(11) (1975), 450–493 | MR | Zbl

[3] Slyusarev G. G., Geometricheskaya optika, Izd-vo AN SSSR, M., 1946 | MR

[4] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996 | MR

[5] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988 | MR

[6] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb R^k$”, Singularity Theory and Its Applications, Advanced Studies in Pure Mathematics, 43, 2006, 401–419 | MR | Zbl

[7] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[8] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[9] Babich V. M., Buldyrev V. S., Molotkov I. A., Prostranstvenno-vremennoi luchevoi metod: Lineinye i nelineinye volny, Izd-vo Leningr. un-ta, L., 1985 | MR | Zbl

[10] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR

[11] Papakov G. V., Tarasev A. M., Uspenskii A. A., “Chislennye approksimatsii obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 60:4 (1996), 570–581 | MR | Zbl

[12] Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Konstruirovanie stabilnykh mostov v differentsialnykh igrakh s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 67:5 (2003), 771–783 | MR

[13] Uspenskii A. A., Ushakov V. N., Fomin A. N., $\alpha$-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.04, No 543-V2004, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004 | Zbl

[14] Lebedev P. D., Uspenskii A. A., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. 9-i mezhdunar. Chetaevskoi konf., T. 5, 2007, 224–236

[15] Rashevskii P. K., Kurs differentsialnoi geometrii, Editorial, M., 2003

[16] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[17] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR