Minimal embeddings of topological spaces into the real line
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 174-181
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem describing $\mathbb R$-minimal topological spaces is proved. These are spaces $(X,\tau)$ topologically embeddable into the real line $\mathbb R$ and not possessing this property under the replacement of $\tau$ by a weaker topology.
@article{TIMM_2008_14_2_a15,
author = {M. A. Patrakeev},
title = {Minimal embeddings of topological spaces into the real line},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {174--181},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a15/}
}
M. A. Patrakeev. Minimal embeddings of topological spaces into the real line. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 174-181. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a15/