Minimal embeddings of topological spaces into the real line
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 174-181

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem describing $\mathbb R$-minimal topological spaces is proved. These are spaces $(X,\tau)$ topologically embeddable into the real line $\mathbb R$ and not possessing this property under the replacement of $\tau$ by a weaker topology.
@article{TIMM_2008_14_2_a15,
     author = {M. A. Patrakeev},
     title = {Minimal embeddings of topological spaces into the real line},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {174--181},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a15/}
}
TY  - JOUR
AU  - M. A. Patrakeev
TI  - Minimal embeddings of topological spaces into the real line
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 174
EP  - 181
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a15/
LA  - ru
ID  - TIMM_2008_14_2_a15
ER  - 
%0 Journal Article
%A M. A. Patrakeev
%T Minimal embeddings of topological spaces into the real line
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 174-181
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a15/
%G ru
%F TIMM_2008_14_2_a15
M. A. Patrakeev. Minimal embeddings of topological spaces into the real line. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 174-181. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a15/