On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 143-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The hypothesis that the alternating groups $A_n$ have no pairs of semiproportional irreducible characters is reduced to a hypothesis concerning the problem of describing the pairs of irreducible characters of the symmetric group $S_n$ that are semiproportional on one of the sets $A_n$ or $S_n\setminus A_n$. The form of this hypothesis (in contrast to the form of the original one) is maximally adapted for an inductive proof. Properties of a pair of the mentioned characters are expressed in terms of the structure of Young's diagrams for these characters. The theorem proved in this paper refines the structure of these diagrams in one of the two possible cases.
@article{TIMM_2008_14_2_a13,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group~$S_n$ that are semiproportional on~$A_n$ or $S_n\setminus A_n${.~I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {143--163},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a13/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 143
EP  - 163
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a13/
LA  - ru
ID  - TIMM_2008_14_2_a13
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 143-163
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a13/
%G ru
%F TIMM_2008_14_2_a13
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 143-163. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a13/

[1] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[2] Belonogov V. A., “K gipoteze o poluproportsionalnykh kharakterakh”, Sib. mat. zhurn., 46:2 (2005), 299–314 | MR | Zbl

[3] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[4] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$”, Algebra i logika, 47:2 (2008), 135–156 | MR | Zbl

[5] Belonogov V. A., “Diagrammy Yunga bez kryukov dliny 4 i kharaktery gruppy $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 30–40

[6] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 11–43

[7] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 13–32

[8] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR

[9] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[10] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[11] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl

[12] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$. II”, Algebra i logika, 44:6 (2005), 643–663 | MR | Zbl

[13] Belonogov V. A., “O diagrammakh Yunga pary neprivodimykh kharakterov $S_n$, ravnokornevykh na $S^\varepsilon_n$”, Sib. mat. zhurn., 49:5 (2008), 992–1006 | MR