Extremal bottleneck routing problem with constraints in the form of precedence conditions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 129-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extremal routing problem under constraints in the form of precedence conditions is considered. The quality criterion is the length of the greatest edge of a trajectory. An economical version of a computational procedure based on the dynamic programming method is constructed.
@article{TIMM_2008_14_2_a12,
     author = {A. A. Chentsov and A. G. Chentsov},
     title = {Extremal bottleneck routing problem with constraints in the form of precedence conditions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--142},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a12/}
}
TY  - JOUR
AU  - A. A. Chentsov
AU  - A. G. Chentsov
TI  - Extremal bottleneck routing problem with constraints in the form of precedence conditions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 129
EP  - 142
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a12/
LA  - ru
ID  - TIMM_2008_14_2_a12
ER  - 
%0 Journal Article
%A A. A. Chentsov
%A A. G. Chentsov
%T Extremal bottleneck routing problem with constraints in the form of precedence conditions
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 129-142
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a12/
%G ru
%F TIMM_2008_14_2_a12
A. A. Chentsov; A. G. Chentsov. Extremal bottleneck routing problem with constraints in the form of precedence conditions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 129-142. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a12/

[1] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Voprosy teorii”, Avtomatika i telemekhanika, 1989, no. 9, 3–34 | MR

[2] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Tochnye algoritmy”, Avtomatika i telemekhanika, 1989, no. 10, 3–29 | MR | Zbl

[3] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Priblizhennye algoritmy”, Avtomatika i telemekhanika, 1989, no. 11, 3–26 | MR | Zbl

[4] Chentsov A. G., Chentsov P. A., “Marshrutizatsiya s usloviyami predshestvovaniya (zadacha kurera): metod dinamicheskogo programmirovaniya”, Vestnik UGTU-UPI, 2004, no. 15(45), 148–151

[5] Chentsov A. A., Chentsov A. G., Chentsov P. A., “Ob odnom obobschenii zadachi kurera”, Algoritmy i program. sredstva parallel. vychislenii, 8, UrO RAN, Ekaterinburg, 2004, 178–235

[6] Chentsov A. A., Chentsov A. G., Chentsov P. A., “Obobschennaya versiya zadachi kurera”, Matematicheskii i prikladnoi analiz, Sb. nauch. tr. Vyp. 2, Izd-vo Tyumenskogo gos. un-ta, Tyumen, 2005, 238–280

[7] Chentsov A. G., “O strukture odnoi ekstremalnoi zadachi marshrutizatsii s ogranicheniyami v vide uslovii predshestvovaniya”, Vestnik Udm. un-ta. Matematika, 2006, no. 1, 127–150

[8] Chentsov A. G., “Ekstremalnye zadachi marshrutizatsii s ogranicheniyami”, Izv. In-ta matematiki i informatiki UdmGU, 2006, no. 3(37), 163–166

[9] Sigal I. Kh., Ivanova A. P., Vvedenie v prikladnoe diskretnoe programmirovanie, Fizmatlit, M., 2007

[10] Chentsov A. A., Chentsov A. G., “O realizatsii metoda dinamicheskogo programmirovaniya v obobschennoi zadache kurera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 136–160