Barrier function method and correction algorithms for improper convex programming problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 115-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, convergence estimates are given for some generalization of the inverse barrier function method in convex programming. The significance of these estimates for constructing iterative algorithms is discussed. Regularizing properties of barrier functions and their application for optimal correction of improper convex programming problems are considered.
@article{TIMM_2008_14_2_a11,
     author = {V. D. Skarin},
     title = {Barrier function method and correction algorithms for improper convex programming problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--128},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/}
}
TY  - JOUR
AU  - V. D. Skarin
TI  - Barrier function method and correction algorithms for improper convex programming problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 115
EP  - 128
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/
LA  - ru
ID  - TIMM_2008_14_2_a11
ER  - 
%0 Journal Article
%A V. D. Skarin
%T Barrier function method and correction algorithms for improper convex programming problems
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 115-128
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/
%G ru
%F TIMM_2008_14_2_a11
V. D. Skarin. Barrier function method and correction algorithms for improper convex programming problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/

[1] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972 | MR | Zbl

[2] Polak E., Chislennye metody optimizatsii. Edinyi podkhod, Mir, M., 1974 | MR | Zbl

[3] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[4] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985 | MR

[5] Elster K.-Kh., Reingardt R., Shoible M., Donat G., Vvedenie v nelineinoe programmirovanie, Nauka, M., 1985 | MR | Zbl

[6] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[7] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR | Zbl

[8] Karmarkar N., “A new polynomial-time algorithm for linear programming”, Combinatorica, 4 (1984), 373–395 | DOI | MR | Zbl

[9] Gill P. E., Murray W., Saunders M. A., Tomlin J. A., Wright M. H., “On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projected methods”, Math. Programming, 36 (1986), 183–209 | DOI | MR | Zbl

[10] Kalinin I. N., Sterlin A. M., “Ob odnom variante modifitsirovannoi funktsii Lagranzha”, Dokl. AN SSSR, 267:4 (1982), 787–789 | MR | Zbl

[11] Polyak R., “Modified barrier functions (theory and methods)”, Math. Programming, 54 (1992), 177–222 | DOI | MR | Zbl

[12] Dussault J.-P., “Augmented non-quadratic penalty algorithms”, Math. Programming. Ser. A, 99 (2004), 467–486 | DOI | MR | Zbl

[13] Mifflin R., “On the convergence of the logarithmic barrier function method”, Numerical methods for unconstrained optimization, ed. F. A. Lootsma, Academic Press, New York, 1972, 367–369 | MR

[14] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[15] Hartung J., “A stable interior penalty method for convex extremal problems”, Numer. Math., 29:2 (1978), 149–158 | DOI | MR

[16] Vasilev F. P., Kovach M., “O regulyarizatsii nekorrektnykh ekstremalnykh zadach s ispolzovaniem shtrafnykh i barernykh funktsii”, Vestnik MGU. Ser. vychisl. matematika i kibernetika, 1980, no. 2, 29–35 | MR

[17] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl

[18] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR

[19] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR