@article{TIMM_2008_14_2_a11,
author = {V. D. Skarin},
title = {Barrier function method and correction algorithms for improper convex programming problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {115--128},
year = {2008},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/}
}
TY - JOUR AU - V. D. Skarin TI - Barrier function method and correction algorithms for improper convex programming problems JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 115 EP - 128 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/ LA - ru ID - TIMM_2008_14_2_a11 ER -
V. D. Skarin. Barrier function method and correction algorithms for improper convex programming problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a11/
[1] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972 | MR | Zbl
[2] Polak E., Chislennye metody optimizatsii. Edinyi podkhod, Mir, M., 1974 | MR | Zbl
[3] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl
[4] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985 | MR
[5] Elster K.-Kh., Reingardt R., Shoible M., Donat G., Vvedenie v nelineinoe programmirovanie, Nauka, M., 1985 | MR | Zbl
[6] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR
[7] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR | Zbl
[8] Karmarkar N., “A new polynomial-time algorithm for linear programming”, Combinatorica, 4 (1984), 373–395 | DOI | MR | Zbl
[9] Gill P. E., Murray W., Saunders M. A., Tomlin J. A., Wright M. H., “On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projected methods”, Math. Programming, 36 (1986), 183–209 | DOI | MR | Zbl
[10] Kalinin I. N., Sterlin A. M., “Ob odnom variante modifitsirovannoi funktsii Lagranzha”, Dokl. AN SSSR, 267:4 (1982), 787–789 | MR | Zbl
[11] Polyak R., “Modified barrier functions (theory and methods)”, Math. Programming, 54 (1992), 177–222 | DOI | MR | Zbl
[12] Dussault J.-P., “Augmented non-quadratic penalty algorithms”, Math. Programming. Ser. A, 99 (2004), 467–486 | DOI | MR | Zbl
[13] Mifflin R., “On the convergence of the logarithmic barrier function method”, Numerical methods for unconstrained optimization, ed. F. A. Lootsma, Academic Press, New York, 1972, 367–369 | MR
[14] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[15] Hartung J., “A stable interior penalty method for convex extremal problems”, Numer. Math., 29:2 (1978), 149–158 | DOI | MR
[16] Vasilev F. P., Kovach M., “O regulyarizatsii nekorrektnykh ekstremalnykh zadach s ispolzovaniem shtrafnykh i barernykh funktsii”, Vestnik MGU. Ser. vychisl. matematika i kibernetika, 1980, no. 2, 29–35 | MR
[17] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl
[18] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR
[19] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR