One modification of the logarithmic barrier function method in linear and convex programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 103-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A novel modification of the logarithmic barrier function method is introduced for solving problems of linear and convex programming. The modification is based on a parametric shifting of the constraints of the original problem, similarly to what was done in the method of Wierzbicki–Hestenes–Powell multipliers for the usual quadratic penalty function (this method is also known as the method of modified Lagrange functions). The new method is described, its convergence is proved, and results of numerical experiments are given.
@article{TIMM_2008_14_2_a10,
     author = {L. D. Popov},
     title = {One modification of the logarithmic barrier function method in linear and convex programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--114},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a10/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - One modification of the logarithmic barrier function method in linear and convex programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 103
EP  - 114
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a10/
LA  - ru
ID  - TIMM_2008_14_2_a10
ER  - 
%0 Journal Article
%A L. D. Popov
%T One modification of the logarithmic barrier function method in linear and convex programming
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 103-114
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a10/
%G ru
%F TIMM_2008_14_2_a10
L. D. Popov. One modification of the logarithmic barrier function method in linear and convex programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 103-114. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a10/

[1] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint VNIISI, M., 1979

[2] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[3] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR

[4] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[5] Eremin I. I., Theory of linear optimization. Ser. Inverse and ill-posed problems, VSP, Utrecht, 2002 | MR

[6] Zhadan V. G., Chislennye metody lineinogo i nelineinogo programmirovaniya. Vspomogatelnye funktsii v uslovnoi optimizatsii, VTs RAN, M., 2002 | MR

[7] Karmanov V. G., Matematicheskoe programmirovanie, Fizmatlit, M., 1986 | Zbl

[8] Nesterov Yu. E., Effektivnye metody v nelineinom programmirovanii, Radio i svyaz, M., 1989

[9] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[10] Firsch K. R., The logarithmic potential method for convex programming, Oslo, 1955

[11] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972 | MR | Zbl

[12] Wierzbicki A. P., “A penalty function shifting method in constrained static optimization and its convergence properties”, Arch. Automat. i Telemech., 16:4 (1971), 395–416 | MR | Zbl

[13] Rockafellar R. T., “The multiplier method of Hestenes and Powell applied to convex programming”, J. Optimiz. Theory and Appl., 12:5 (1973), 555–562 | DOI | MR | Zbl

[14] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979 | MR

[15] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR

[16] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons Ltd., Chichester, 1997 | MR