Saddle problem and optimization problem as an integrated system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A parametric problem of convex programming and a linear optimization problem on a convex set are considered as an integrated system of problems. Properties of this system are studied, the sphere of its application is discussed, and methods for its solution are proposed. The convergence of the proposed methods is established.
@article{TIMM_2008_14_2_a1,
     author = {A. S. Antipin},
     title = {Saddle problem and optimization problem as an integrated system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--15},
     year = {2008},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a1/}
}
TY  - JOUR
AU  - A. S. Antipin
TI  - Saddle problem and optimization problem as an integrated system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 5
EP  - 15
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a1/
LA  - ru
ID  - TIMM_2008_14_2_a1
ER  - 
%0 Journal Article
%A A. S. Antipin
%T Saddle problem and optimization problem as an integrated system
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 5-15
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a1/
%G ru
%F TIMM_2008_14_2_a1
A. S. Antipin. Saddle problem and optimization problem as an integrated system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 2, pp. 5-15. http://geodesic.mathdoc.fr/item/TIMM_2008_14_2_a1/

[1] Antipin A. S., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 27:3 (1987), 368–376 | MR

[2] Antipin A. S., “O modelyakh vzaimodeistviya predpriyatii-proizvoditelei, predpriyatii-potrebitelei i transportnoi sistemy”, Avtomatika i telemekhanika, 1989, no. 10, 105–113 | Zbl

[3] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999

[4] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial Press, M., 2003 | MR

[5] Polterovich V. M., Ekonomicheskoe ravnovesie i khozyaistvennyi mekhanizm, Nauka, M., 1990

[6] Antipin A. S., “Obratnaya zadacha optimizatsii”, Ekonomiko-matematicheskii entsiklopedicheskii slovar, Bolshaya rossiiskaya entsiklopediya, M., 2003, 346–347

[7] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[8] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa (teoriya i prilozheniya), NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005 | MR

[9] Antipin A. S., “Ekstrapolyatsionnye metody vychisleniya sedlovoi tochki funktsii Lagranzha ekstremalnykh otobrazhenii”, Zhurn. vychisl. matematiki i mat. fiziki, 1:1 (1986), 150–151

[10] Antipin A. S., “Upravlyaemye proksimalnye differentsialnye sistemy dlya resheniya sedlovykh zadach”, Differents. uravneniya, 28:11 (1992), 1846–1861 | MR | Zbl

[11] Antipin A. S., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zhurn. vychisl. matematiki i mat. fiziki, 1:1 (1997), 150–151

[12] Antipin A. S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zhurn. vychisl. matematki i mat. fiziki, 45:11 (2005), 1969–1990 | MR | Zbl

[13] Antipin A. S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach so svyazannymi peremennymi”, Zhurn. vychisl. matematiki i mat. fiziki, 45:12 (2005), 2102–2111 | MR | Zbl