Problems of homeomorphism arising in the theory of grid generation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 112-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some general criteria of being a homeomorphism for continuous maps of topological spaces and topological manifolds are proved in this paper, as well as criteria of being a diffeomorphism for smooth maps of smooth manifolds.
@article{TIMM_2008_14_1_a9,
     author = {M. F. Prokhorova},
     title = {Problems of homeomorphism arising in the theory of grid generation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--129},
     year = {2008},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a9/}
}
TY  - JOUR
AU  - M. F. Prokhorova
TI  - Problems of homeomorphism arising in the theory of grid generation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 112
EP  - 129
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a9/
LA  - ru
ID  - TIMM_2008_14_1_a9
ER  - 
%0 Journal Article
%A M. F. Prokhorova
%T Problems of homeomorphism arising in the theory of grid generation
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 112-129
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a9/
%G ru
%F TIMM_2008_14_1_a9
M. F. Prokhorova. Problems of homeomorphism arising in the theory of grid generation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 112-129. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a9/

[1] Ushakova O. V., “On nondegeneracy of three-dimensional grids”, Proc. of the Steklov Inst. of Math., Suppl. 1, 2004, S78–S100 | MR

[2] Ushakova O. V., “Nondegeneracy conditions for different types of grids”, Advances in grid generation, ed. O. V. Ushakova, Nova Science Publishers, New York, 2007, 241–278 | MR

[3] Bobylev N. A., Ivanenko S. A., Ismailov I. G., “Neskolko zamechanii o gomeomorfnykh otobrazheniyakh”, Mat. zametki, 60:4 (1996), 593–596 | MR | Zbl

[4] Bobylev N. A., Ivanenko S. A., Kazunin A. V., “O kusochno-gladkikh gomeomorfnykh otobrazheniyakh ogranichennykh oblastei i ikh prilozheniyakh k teorii setok”, Zhurn. vychisl. matematiki i mat. fiziki, 43:6 (2003), 808–817 | MR | Zbl

[5] Prokhorova M. F., “Nekotorye kriterii gomeomorfnosti”, Problemy teoreticheskoi i prikladnoi matematiki, UrO RAN, Ekaterinburg, 2007, 65–69

[6] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[7] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl

[8] Novikov D., Khovanskii A., “On affine hypersurfaces with everywhere nondegenerate Second Quadratic Form”, Moscow Math. J., 6:1 (2006), 135–152 | MR | Zbl

[9] Brown M., “Locally flat imbeddings of topological manifolds”, Ann. of Math., 75:2 (1962), 331–341 | DOI | MR | Zbl

[10] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti. Vvedenie v teoriyu topologicheskikh prostranstv i obschuyu teoriyu razmernosti, Nauka, M., 1973 | MR

[11] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[12] Mankrs Dzh., Kharakteristicheskie klassy, Elementarnaya differentsialnaya topologiya. Prilozhenie, eds. Milnor Dzh., Stashef Dzh., Mir, M., 1979 | MR

[13] Meisters G. H., Olech C., “Locally one-to-one mappings and a classical theorem on schlicht functions”, Duke Math. J., 30:1 (1963), 63–80 | DOI | MR | Zbl

[14] http://sowa.livejournal.com.