On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 98-111
Voir la notice de l'article provenant de la source Math-Net.Ru
The behavior of solutions of elliptic equations in neighborhoods of angular and conical boundary points has been well studied; the asymptotics of these solutions has been constructed. In the present paper, we propose a new approach to constructing asymptotic decompositions in a neighborhood of an angular boundary point, which allows us to describe the structure of these asymptotics in a relatively simple and illustrative way.
@article{TIMM_2008_14_1_a8,
author = {E. F. Lelikova},
title = {On the {Structure} of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--111},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/}
}
TY - JOUR AU - E. F. Lelikova TI - On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 98 EP - 111 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/ LA - ru ID - TIMM_2008_14_1_a8 ER -
%0 Journal Article %A E. F. Lelikova %T On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point %J Trudy Instituta matematiki i mehaniki %D 2008 %P 98-111 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/ %G ru %F TIMM_2008_14_1_a8
E. F. Lelikova. On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/