On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 98-111

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of solutions of elliptic equations in neighborhoods of angular and conical boundary points has been well studied; the asymptotics of these solutions has been constructed. In the present paper, we propose a new approach to constructing asymptotic decompositions in a neighborhood of an angular boundary point, which allows us to describe the structure of these asymptotics in a relatively simple and illustrative way.
@article{TIMM_2008_14_1_a8,
     author = {E. F. Lelikova},
     title = {On the {Structure} of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 98
EP  - 111
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/
LA  - ru
ID  - TIMM_2008_14_1_a8
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 98-111
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/
%G ru
%F TIMM_2008_14_1_a8
E. F. Lelikova. On the Structure of asymptotics of the solution of a~second-order elliptic equation in a~neighborhood of an angular point. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a8/