Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 74-80
Cet article a éte moissonné depuis la source Math-Net.Ru
A decomposition is constructed of a hereditarily arcwise connected continuum containing no open arcs and $\theta$-curves into two subcontinua with connected intersection, one of which has an arc or a simple closed curve as a separator. The results obtained are related to a problem called Overdeck’s conjecture.
@article{TIMM_2008_14_1_a6,
author = {V. A. Koshcheev},
title = {Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {74--80},
year = {2008},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/}
}
TY - JOUR AU - V. A. Koshcheev TI - Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 74 EP - 80 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/ LA - ru ID - TIMM_2008_14_1_a6 ER -
%0 Journal Article %A V. A. Koshcheev %T Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions %J Trudy Instituta matematiki i mehaniki %D 2008 %P 74-80 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/ %G ru %F TIMM_2008_14_1_a6
V. A. Koshcheev. Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/
[1] Koshcheev V. A., “Two theorems concerning Overdeck's Conjecture about systems of complex-valued functions with the Haar condition”, Proc. of the Steklov Inst. of Math., Suppl. 1, 2004, 137–146 | MR
[2] Overdeck J. M., “On the nonexistence of complex Haar systems”, Bull. Amer. Math. Soc., 77:5 (1971), 737–740 | DOI | MR | Zbl
[3] Schoenberg I. J., Yang C. T., “On the unicity of solutions of problems of best approximation”, Ann. Mat. Pura Appl., 54 (1961), 1–12 | DOI | MR | Zbl
[4] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR
[5] Kuratovskii K., Topologiya, Mir, M., 1969, T. 2 | MR