Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 74-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A decomposition is constructed of a hereditarily arcwise connected continuum containing no open arcs and $\theta$-curves into two subcontinua with connected intersection, one of which has an arc or a simple closed curve as a separator. The results obtained are related to a problem called Overdeck’s conjecture.
@article{TIMM_2008_14_1_a6,
     author = {V. A. Koshcheev},
     title = {Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--80},
     year = {2008},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/}
}
TY  - JOUR
AU  - V. A. Koshcheev
TI  - Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 74
EP  - 80
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/
LA  - ru
ID  - TIMM_2008_14_1_a6
ER  - 
%0 Journal Article
%A V. A. Koshcheev
%T Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 74-80
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/
%G ru
%F TIMM_2008_14_1_a6
V. A. Koshcheev. Separators of hereditarily arcwise connected continua admitting chebyshev systems of complex continuous functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a6/

[1] Koshcheev V. A., “Two theorems concerning Overdeck's Conjecture about systems of complex-valued functions with the Haar condition”, Proc. of the Steklov Inst. of Math., Suppl. 1, 2004, 137–146 | MR

[2] Overdeck J. M., “On the nonexistence of complex Haar systems”, Bull. Amer. Math. Soc., 77:5 (1971), 737–740 | DOI | MR | Zbl

[3] Schoenberg I. J., Yang C. T., “On the unicity of solutions of problems of best approximation”, Ann. Mat. Pura Appl., 54 (1961), 1–12 | DOI | MR | Zbl

[4] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR

[5] Kuratovskii K., Topologiya, Mir, M., 1969, T. 2 | MR