On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 61-73

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, investigation of stationary problems of natural thermal convection in the Boussinesq approximation with irregular boundary data is carried out. Existence and uniqueness theorems for a weak solution of such problems are proved. The smoothness of a weak solution depending on the smoothness of the initial data and the smoothness of the boundary of the domain where the problem is considered is investigated.
@article{TIMM_2008_14_1_a5,
     author = {A. I. Korotkii and D. A. Kovtunov},
     title = {On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {61--73},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. A. Kovtunov
TI  - On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 61
EP  - 73
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/
LA  - ru
ID  - TIMM_2008_14_1_a5
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. A. Kovtunov
%T On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 61-73
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/
%G ru
%F TIMM_2008_14_1_a5
A. I. Korotkii; D. A. Kovtunov. On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 61-73. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/