On solvability of stationary problems of natural thermal convection of a high-viscosity fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 61-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, investigation of stationary problems of natural thermal convection in the Boussinesq approximation with irregular boundary data is carried out. Existence and uniqueness theorems for a weak solution of such problems are proved. The smoothness of a weak solution depending on the smoothness of the initial data and the smoothness of the boundary of the domain where the problem is considered is investigated.
@article{TIMM_2008_14_1_a5,
     author = {A. I. Korotkii and D. A. Kovtunov},
     title = {On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {61--73},
     year = {2008},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. A. Kovtunov
TI  - On solvability of stationary problems of natural thermal convection of a high-viscosity fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 61
EP  - 73
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/
LA  - ru
ID  - TIMM_2008_14_1_a5
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. A. Kovtunov
%T On solvability of stationary problems of natural thermal convection of a high-viscosity fluid
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 61-73
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/
%G ru
%F TIMM_2008_14_1_a5
A. I. Korotkii; D. A. Kovtunov. On solvability of stationary problems of natural thermal convection of a high-viscosity fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 61-73. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/

[1] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi, Tr. mezhdunar. seminara. T. 2, UrGU, Ekaterinburg, 2006, 82–91

[2] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 88–97 | MR

[3] Alekseev G. V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravneniya teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[4] Alekseev G. V., Smyshlyaev A. B., Tereshko D. A., “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:1 (2003), 66–80 | MR

[5] Alekseev G. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[6] Alekseev G. V., “Razreshimost kraevoi zadachi dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Sib. zhurn. industr. matem., 9:1 (2006), 13–27 | MR

[7] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Dover Publications, New York, 1981

[8] Adams R. A., Sobolev spaces, Acad. Press, New York, 1975 | MR | Zbl

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[12] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961

[13] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1968

[14] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[15] Lukaszewicz G., Rojas-Medar M., Santos M., “Stationary micropolar fluid flows with boundary data in $L^2$”, J. Math. Anal. Appl., 271:1 (2002), 91–107 | DOI | MR | Zbl

[16] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[17] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[18] Brown R. M., Shen Z., “Estimates for the Stokes operator in Lipschitz domains”, Indiana Univ. Math. J., 44:4 (1995), 1183–1206 | DOI | MR | Zbl

[19] Brown R. M., Perry P. A., Shen Z., “On the dimension of the attractor for the non-homogenous Navier–Stokes equations in non-smooth domains”, Indiana Univ. Math. J., 49:1 (2000), 81–112 | DOI | MR | Zbl

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[21] Kellogg R. B., Osborn J. E., “A regularity result for the Stokes problem in a convex polygon”, J. Func. Anal., 21:4 (1976), 397–431 | DOI | MR | Zbl

[22] Dauge M., “Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations”, SIAM J. Math. Anal., 20:1 (1989), 74–97 | DOI | MR | Zbl