@article{TIMM_2008_14_1_a5,
author = {A. I. Korotkii and D. A. Kovtunov},
title = {On solvability of stationary problems of natural thermal convection of a~high-viscosity fluid},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {61--73},
year = {2008},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/}
}
TY - JOUR AU - A. I. Korotkii AU - D. A. Kovtunov TI - On solvability of stationary problems of natural thermal convection of a high-viscosity fluid JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 61 EP - 73 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/ LA - ru ID - TIMM_2008_14_1_a5 ER -
%0 Journal Article %A A. I. Korotkii %A D. A. Kovtunov %T On solvability of stationary problems of natural thermal convection of a high-viscosity fluid %J Trudy Instituta matematiki i mehaniki %D 2008 %P 61-73 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/ %G ru %F TIMM_2008_14_1_a5
A. I. Korotkii; D. A. Kovtunov. On solvability of stationary problems of natural thermal convection of a high-viscosity fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 61-73. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a5/
[1] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi, Tr. mezhdunar. seminara. T. 2, UrGU, Ekaterinburg, 2006, 82–91
[2] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 88–97 | MR
[3] Alekseev G. V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravneniya teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl
[4] Alekseev G. V., Smyshlyaev A. B., Tereshko D. A., “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:1 (2003), 66–80 | MR
[5] Alekseev G. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl
[6] Alekseev G. V., “Razreshimost kraevoi zadachi dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Sib. zhurn. industr. matem., 9:1 (2006), 13–27 | MR
[7] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Dover Publications, New York, 1981
[8] Adams R. A., Sobolev spaces, Acad. Press, New York, 1975 | MR | Zbl
[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[12] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961
[13] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1968
[14] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR
[15] Lukaszewicz G., Rojas-Medar M., Santos M., “Stationary micropolar fluid flows with boundary data in $L^2$”, J. Math. Anal. Appl., 271:1 (2002), 91–107 | DOI | MR | Zbl
[16] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl
[17] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl
[18] Brown R. M., Shen Z., “Estimates for the Stokes operator in Lipschitz domains”, Indiana Univ. Math. J., 44:4 (1995), 1183–1206 | DOI | MR | Zbl
[19] Brown R. M., Perry P. A., Shen Z., “On the dimension of the attractor for the non-homogenous Navier–Stokes equations in non-smooth domains”, Indiana Univ. Math. J., 49:1 (2000), 81–112 | DOI | MR | Zbl
[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR
[21] Kellogg R. B., Osborn J. E., “A regularity result for the Stokes problem in a convex polygon”, J. Func. Anal., 21:4 (1976), 397–431 | DOI | MR | Zbl
[22] Dauge M., “Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations”, SIAM J. Math. Anal., 20:1 (1989), 74–97 | DOI | MR | Zbl