Continuous conjugation of special nonisentropic one-dimensional gas motions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The exact partially invariant solution of equations of motion of a compressible fluid describing the collapse of particles to a point and an instantaneous source from the point in a one-dimensional nonisentropic motion is cut off by the characteristics and glued into a continuous solution of a one-dimensional submodel in a finite domain. The possibility of a continuous periodic nonisentropic motion of a compressible fluid in a bounded domain under the action of a piston is shown.
@article{TIMM_2008_14_1_a2,
     author = {A. R. Garifullin and S. V. Khabirov},
     title = {Continuous conjugation of special nonisentropic one-dimensional gas motions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {22--30},
     year = {2008},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/}
}
TY  - JOUR
AU  - A. R. Garifullin
AU  - S. V. Khabirov
TI  - Continuous conjugation of special nonisentropic one-dimensional gas motions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 22
EP  - 30
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/
LA  - ru
ID  - TIMM_2008_14_1_a2
ER  - 
%0 Journal Article
%A A. R. Garifullin
%A S. V. Khabirov
%T Continuous conjugation of special nonisentropic one-dimensional gas motions
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 22-30
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/
%G ru
%F TIMM_2008_14_1_a2
A. R. Garifullin; S. V. Khabirov. Continuous conjugation of special nonisentropic one-dimensional gas motions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/

[1] Sidorov A. F., Izbrannye trudy. Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[2] Teshukov V. M., “Prostranstvennyi analog tsentrirovannykh voln Rimana i Prandtlya–Maiera”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 4 (1982), 98–106 | MR

[3] Bautin S. P., Deryabin S. L., Matematicheskoe modelirovanie istecheniya idealnogo gaza v vakuum, Nauka, Novosibirsk, 2005 | Zbl

[4] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[5] Chupakhin A. P., Barakhronnye dvizheniya gaza: obschie svoistva i podmodeli tipov (1,2) i (1,1), Preprint No 4-98, In-t gidrodinamiki SO RAN, Novosibirsk, 1998

[6] Khabirov S. V., “Zadacha Gursa o nepreryvnom sopryazhenii radialnykh pryamolineinykh dvizhenii gaza”, Mat. zametki, 79:4 (2006), 601–606 | MR | Zbl

[7] Garifullin A. R., “Obschee reshenie pereopredelennoi podmodeli szhimaemoi zhidkosti ranga 2 defekta 1”, Problemy teoreticheskoi i prikladnoi matematiki, Tr. 36-i pegion. molodezh. konf., Ekaterinburg, 2005, 122–125

[8] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981 | MR | Zbl