Continuous conjugation of special nonisentropic one-dimensional gas motions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 22-30

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact partially invariant solution of equations of motion of a compressible fluid describing the collapse of particles to a point and an instantaneous source from the point in a one-dimensional nonisentropic motion is cut off by the characteristics and glued into a continuous solution of a one-dimensional submodel in a finite domain. The possibility of a continuous periodic nonisentropic motion of a compressible fluid in a bounded domain under the action of a piston is shown.
@article{TIMM_2008_14_1_a2,
     author = {A. R. Garifullin and S. V. Khabirov},
     title = {Continuous conjugation of special nonisentropic one-dimensional gas motions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {22--30},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/}
}
TY  - JOUR
AU  - A. R. Garifullin
AU  - S. V. Khabirov
TI  - Continuous conjugation of special nonisentropic one-dimensional gas motions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 22
EP  - 30
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/
LA  - ru
ID  - TIMM_2008_14_1_a2
ER  - 
%0 Journal Article
%A A. R. Garifullin
%A S. V. Khabirov
%T Continuous conjugation of special nonisentropic one-dimensional gas motions
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 22-30
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/
%G ru
%F TIMM_2008_14_1_a2
A. R. Garifullin; S. V. Khabirov. Continuous conjugation of special nonisentropic one-dimensional gas motions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a2/