On solving the potential equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 130-145

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider planar nonstationary potential flows of polytropic gas. The corresponding partial differential equation is studied by the method of level surfaces. Sufficient conditions on the arbitrary functions providing the construction of exact solutions of the potential equation are obtained. Equations for shock waves separating the potential flow from the rest area or from the area of motion with constant velocity are written out.
@article{TIMM_2008_14_1_a10,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {On solving the potential equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--145},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a10/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - On solving the potential equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 130
EP  - 145
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a10/
LA  - ru
ID  - TIMM_2008_14_1_a10
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T On solving the potential equation
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 130-145
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a10/
%G ru
%F TIMM_2008_14_1_a10
L. I. Rubina; O. N. Ul'yanov. On solving the potential equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 130-145. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a10/