Existence of a solution of an initial-boundary value difference problem for a linear heat equation with a nonlinear boundary condition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 11-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of heat propagation in the ground from a heated pipeline with a partially heat-insulating shell is considered. The possibility is proved to construct a numerical solution of a linear heat equation by using a direct finite-difference method in the case when the thermal radiation on the ground surface is taken into account. On the basis of the theorem about the solvability of a system of linear difference equations by means of the sweep method, the existence and uniqueness of a solution of a corresponding difference problem with nonlinear boundary condition are proved.
@article{TIMM_2008_14_1_a1,
     author = {N. A. Vaganova},
     title = {Existence of a~solution of an initial-boundary value difference problem for a~linear heat equation with a~nonlinear boundary condition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {11--21},
     year = {2008},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a1/}
}
TY  - JOUR
AU  - N. A. Vaganova
TI  - Existence of a solution of an initial-boundary value difference problem for a linear heat equation with a nonlinear boundary condition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 11
EP  - 21
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a1/
LA  - ru
ID  - TIMM_2008_14_1_a1
ER  - 
%0 Journal Article
%A N. A. Vaganova
%T Existence of a solution of an initial-boundary value difference problem for a linear heat equation with a nonlinear boundary condition
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 11-21
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a1/
%G ru
%F TIMM_2008_14_1_a1
N. A. Vaganova. Existence of a solution of an initial-boundary value difference problem for a linear heat equation with a nonlinear boundary condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/TIMM_2008_14_1_a1/

[1] Budadin O. N., Potapov A. I. i dr., Teplovoi nerazrushayuschii kontrol izdelii, Nauka, M., 2002

[2] Quitner P., “Global existence of solutions of parabolic problems with nonlinear boundary conditions”, Singularities and differential equations, 33, Banach center publications, Warszawa, 1996, 309–314 | MR

[3] Titov S. S., “Reshenie periodicheskikh zadach Koshi s pomoschyu spetsialnykh trigonometricheskikh ryadov”, Chislennye metody mekhaniki sploshnoi sredy, 9:2 (1984), 112–124 | MR

[4] Cherepanov A. N., Shapeev V. P., Fomin V. M., Semin L. G., “Chislennoe modelirovanie teplofizicheskikh protsessov pri lazerno-luchevoi svarke s obrazovaniem parovogo kanala”, Prikl. mekhanika i tekhn. fizika, 47:5 (2006), 88–96 | MR | Zbl

[5] Shapeev V. P., Cherepanov A. N., “Konechno-raznostnyi algoritm dlya chislennogo modelirovaniya protsessov lazernoi svarki metallicheskikh plastin”, Vychisl. tekhnologii, 11:4 (2006), 102–117

[6] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[8] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[9] Vaganova N. A., “Modelirovanie neodnorodnykh teplovykh polei ot zaglublennogo istochnika na dnevnoi poverkhnosti”, Cb. nauch. tr., Matematicheskoe i informatsionnoe modelirovanie, 7, Vektor Buk, Tyumen, 2005, 77–84