Граничные наклоны в трехмерных многообразиях
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 119-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2007_13_4_a9,
     author = {E. A. Sbrodova},
     title = {{\CYRG}{\cyrr}{\cyra}{\cyrn}{\cyri}{\cyrch}{\cyrn}{\cyrery}{\cyre} {\cyrn}{\cyra}{\cyrk}{\cyrl}{\cyro}{\cyrn}{\cyrery} {\cyrv}~{\cyrt}{\cyrr}{\cyre}{\cyrh}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrz}{\cyri}{\cyrya}{\cyrh}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--128},
     year = {2007},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a9/}
}
TY  - JOUR
AU  - E. A. Sbrodova
TI  - Граничные наклоны в трехмерных многообразиях
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 119
EP  - 128
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a9/
LA  - ru
ID  - TIMM_2007_13_4_a9
ER  - 
%0 Journal Article
%A E. A. Sbrodova
%T Граничные наклоны в трехмерных многообразиях
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 119-128
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a9/
%G ru
%F TIMM_2007_13_4_a9
E. A. Sbrodova. Граничные наклоны в трехмерных многообразиях. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 119-128. http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a9/

[1] Jaco W., Rubinstein J. H., Sedgwick E., Finding planar surfaces in knot- and link-manifolds, arXiv:math.GT/0608700.

[2] Sbrodova E. A., “Ploskie poverkhnosti v trekhmernykh mnogoobraziyakh”, Sib. elektron. mat. izv., 3 (2006), 451–463 | Zbl

[3] Jaco W., Sedgwick E., Decision problems in the space of Dehn fillings, arXiv:math.GT/9811031. | MR

[4] Sbrodova E. A., “Algoritm nakhozhdeniya ploskikh poverkhnostei v trekhmernykh mnogoobraziyakh”, Fundam. i prikl. matematika, 11:4 (2005), 197–202 | MR

[5] Haken W., “Theorie der Normalflächen. Ein Isotopiekriterium für der Kreisknoten”, Acta. Math., 105 (1961), 245–375 | DOI | MR | Zbl

[6] Matveev S., Algorithmic Topology and Classification of 3-Manifolds, Springer-Verl., Heidelberg, 2003 | MR

[7] Jaco W., Oertel U., “An algorithm to decide if a 3-manifold is a Haken manifold”, Topology, 23:2 (1984), 195–209 | DOI | MR | Zbl

[8] Jaco W., Lectures on three-manifold topology, Regional Conference Series in Mathematics, 43, 1977 | Zbl