@article{TIMM_2007_13_4_a3,
author = {E. V. Berezina},
title = {{\CYRZ}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya} {\cyrd}{\cyri}{\cyrn}{\cyra}{\cyrm}{\cyri}{\cyrk}{\cyri} {\cyrd}{\cyri}{\cyrf}{\cyrf}{\cyre}{\cyrr}{\cyre}{\cyrn}{\cyrc}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm} {\cyrs}~{\cyrk}{\cyrv}{\cyra}{\cyrd}{\cyrr}{\cyra}{\cyrt}{\cyri}{\cyrch}{\cyrn}{\cyro}{\cyrishrt} {\cyrn}{\cyre}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyrsftsn}{\cyryu}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {34--48},
year = {2007},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a3/}
}
E. V. Berezina. Задачи моделирования динамики дифференциальных систем с квадратичной нелинейностью. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 34-48. http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a3/
[1] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl
[2] Kurzhanski A. B., Filippova T. F., “On the theory of trajectory tubes – a mathematical formalism for uncertain dynamics, viability and control”, Advances in Nonlinear Dynamics and Control, Progress in Systems and Control Theory, 17, Birkhäuser, 1993, 122–188 | MR
[3] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR
[4] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl
[5] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR
[6] Krasovskii N. N., Teoriya upravlenie dvizheniem, Nauka, M., 1968 | MR
[7] Ponomarev V. D., “Svyaznost mnozhestva reshenii obyknovennogo differentsialnogo uravneniya 2-go poryadka”, Latv. mat. ezhegodnik, 28 (1984), 101–103 | MR | Zbl
[8] Lojasiewicz S., “Some properties of accessible sets in non-linear control systems”, Annales Polonici Mathematici, 36 (1979), 123–137 | MR | Zbl
[9] Plis A., “Uniqueness of optimal trajectories for non-linear control systems”, Ann. Polon. Math., 29 (1974), 397–401 | MR
[10] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR
[11] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Inostr. lit., M., 1958
[12] Filippova T. F., Berezina E. V., “On State Estimation Approaches for Uncertain Dynamical Systems with Quadratic Nonlinearity: Theory and Computer Simulations”, Proc. 6th Int. Conf. Large-Scale Scientific Computations LSSC'07 (Sozopol, Bulgaria, 2007. Abstr.), 20–21
[13] Berezina E. V., “Zadachi modelirovaniya dinamiki differentsialnykh sistem s neopredelennostyu po nachalnym dannym”, Tr. 38-i region. mol. konf., izd-vo UrO RAN, Ekaterinburg, 2007, 276–280
[14] Panasyuk A. I., “Equations of attainable set dynamics. Part 1: Integral funnel equations”, J. Optimiz. Theory Appl., 64:2 (1990), 349–366 | DOI | MR | Zbl
[15] Wolenski P. R., “The exponential formula for the reachable set of a Lipschitz differential inclusion”, SIAM J. Control Optimization, 28:5 (1990), 1148–1161 | DOI | MR | Zbl
[16] Aubin J. P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990 | MR | Zbl
[17] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[18] Baier R., Chahma I. A., Gerdts M., “Approximation of reachable sets by direct solution methods for optimal control problems”, Optimization Methods and Software, 22:3 (2007), 433–452 | DOI | MR | Zbl
[19] Dyn N., Farkhi E. M., Mokhov A., “Approximations of set-valued functions by metric linear operators”, Constr. Approx., 25 (2007), 193–209 | DOI | MR | Zbl
[20] Patsko V. S., Pyatko S. G., Kumkov S. I., Fedotov A. A., Otsenivanie traektornogo dvizheniya vozdushnogo sudna na osnove informatsionnykh mnozhestv, Nauch. dokl. Akad. grazhdan. aviatsii, IMM UrO RAN. SPb., Ekaterinburg, 1999