On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 14-26
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of an invariant solution of thermodiffusion equations in a planar layer are investigated in the case when the surface tension on the surface of two mixtures depends linearly on temperature and concentration. For the arising adjoint initial-boundary value problem, a priori estimates of perturbations of velocity and temperature fields are obtained. The estimates show that perturbations converge exponentially to stationary values as time increases. Concentration perturbations also settle into a stationary regime; this is proved by means of the Laplace transformation.
@article{TIMM_2007_13_4_a1,
author = {V. K. Andreev},
title = {On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {14--26},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/}
}
TY - JOUR AU - V. K. Andreev TI - On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures JO - Trudy Instituta matematiki i mehaniki PY - 2007 SP - 14 EP - 26 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/ LA - ru ID - TIMM_2007_13_4_a1 ER -
%0 Journal Article %A V. K. Andreev %T On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures %J Trudy Instituta matematiki i mehaniki %D 2007 %P 14-26 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/ %G ru %F TIMM_2007_13_4_a1
V. K. Andreev. On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 14-26. http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/