On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 14-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Properties of an invariant solution of thermodiffusion equations in a planar layer are investigated in the case when the surface tension on the surface of two mixtures depends linearly on temperature and concentration. For the arising adjoint initial-boundary value problem, a priori estimates of perturbations of velocity and temperature fields are obtained. The estimates show that perturbations converge exponentially to stationary values as time increases. Concentration perturbations also settle into a stationary regime; this is proved by means of the Laplace transformation.
@article{TIMM_2007_13_4_a1,
     author = {V. K. Andreev},
     title = {On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--26},
     year = {2007},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/}
}
TY  - JOUR
AU  - V. K. Andreev
TI  - On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 14
EP  - 26
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/
LA  - ru
ID  - TIMM_2007_13_4_a1
ER  - 
%0 Journal Article
%A V. K. Andreev
%T On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 14-26
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/
%G ru
%F TIMM_2007_13_4_a1
V. K. Andreev. On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 4, pp. 14-26. http://geodesic.mathdoc.fr/item/TIMM_2007_13_4_a1/

[1] Andreev V. K., Zakhvataev V. E., Ryabitskii E. A., Termokapillyarnaya neustoichivost, Nauka, Novosibirsk, 2000 | MR | Zbl

[2] Andreev V. K., “Ob invariantnykh resheniyakh uravnenii termodiffuzii”, Simmetriya i differentsialnye uravneniya, Tr. 3-i Mezhdunar. konf. Krasnoyarsk, IVM SO RAN, 2002, 13–17

[3] Lavrentev M. A.,Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[4] Andreev V. K., Kartoshkina A. E., “Avtomodelnoe dvizhenie binarnykh smesei s ploskoi granitsei razdela”, Sib. zhurn. industrial. matematiki, 10:1(29) (2007), 17–24 | MR