@article{TIMM_2007_13_3_a5,
author = {A. V. Konygin},
title = {On primitive permutation groups with nontrivial global stabilizers},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {61--64},
year = {2007},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a5/}
}
A. V. Konygin. On primitive permutation groups with nontrivial global stabilizers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 61-64. http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a5/
[1] Albertson M. O., Collins K. L., “Symmetry breaking in graphs”, Electron. J. Combin., 3:1 (1996), R18 | MR | Zbl
[2] Cameron P. J., Neumann P. M., Saxl J., “On groups with no regular orbits on the set of subsets”, Arch. Math., 43 (1984), 295–296 | DOI | MR | Zbl
[3] Chan M., “The maximum distinguishing number of a group”, Electron. J. Combin., 13 (2006), 70 | MR
[4] The GAP Group, GAP–Groups, Algorithms and Programming. Version 4.4.6., , 2007 http://www.gap-system.org.
[5] Seress A., “Primitive groups with no regular orbits on the sets of subsets”, Bull. London. Math. Soc., 29 (1997), 697–704 | DOI | MR | Zbl
[6] Tymoczko J., “Distinguishing numbers for graphs and groups”, Electron. J. Combin., 11 (2004), R63 | MR | Zbl
[7] Konygin A. V., “Mnozhestva s trivialnymi globalnymi stabilizatorami dlya primitivnykh grupp podstanovok, ne yavlyayuschikhsya pochti prostymi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 115–131 | MR