On primitive permutation groups with nontrivial global stabilizers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 61-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper the distinguishing number $D(G)$ of an arbitrary finite primitive permutation group $G$ is determined. As a consequence, the distinguishing number $D(\Gamma)$ of an arbitrary finite graph $\Gamma$ with a vertex-primitive group of automorphisms is found.
@article{TIMM_2007_13_3_a5,
     author = {A. V. Konygin},
     title = {On primitive permutation groups with nontrivial global stabilizers},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {61--64},
     year = {2007},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a5/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On primitive permutation groups with nontrivial global stabilizers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 61
EP  - 64
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a5/
LA  - ru
ID  - TIMM_2007_13_3_a5
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On primitive permutation groups with nontrivial global stabilizers
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 61-64
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a5/
%G ru
%F TIMM_2007_13_3_a5
A. V. Konygin. On primitive permutation groups with nontrivial global stabilizers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 61-64. http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a5/

[1] Albertson M. O., Collins K. L., “Symmetry breaking in graphs”, Electron. J. Combin., 3:1 (1996), R18 | MR | Zbl

[2] Cameron P. J., Neumann P. M., Saxl J., “On groups with no regular orbits on the set of subsets”, Arch. Math., 43 (1984), 295–296 | DOI | MR | Zbl

[3] Chan M., “The maximum distinguishing number of a group”, Electron. J. Combin., 13 (2006), 70 | MR

[4] The GAP Group, GAP–Groups, Algorithms and Programming. Version 4.4.6., , 2007 http://www.gap-system.org.

[5] Seress A., “Primitive groups with no regular orbits on the sets of subsets”, Bull. London. Math. Soc., 29 (1997), 697–704 | DOI | MR | Zbl

[6] Tymoczko J., “Distinguishing numbers for graphs and groups”, Electron. J. Combin., 11 (2004), R63 | MR | Zbl

[7] Konygin A. V., “Mnozhestva s trivialnymi globalnymi stabilizatorami dlya primitivnykh grupp podstanovok, ne yavlyayuschikhsya pochti prostymi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 115–131 | MR