Young diagrams without hooks of length 4 and characters of the group $S_n$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 30-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

All finite Young diagrams not containing hooks of length 4 are found. Self-associated diagrams possessing this property are subdivided into three series. Sets of all hook lengths are determined for diagrams contained in each series. The research conducted has proven necessary for the study of certain pairs of irreducible characters of symmetric and alternating groups.
@article{TIMM_2007_13_3_a2,
     author = {V. A. Belonogov},
     title = {Young diagrams without hooks of length~4 and characters of the group~$S_n$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--40},
     year = {2007},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a2/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Young diagrams without hooks of length 4 and characters of the group $S_n$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 30
EP  - 40
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a2/
LA  - ru
ID  - TIMM_2007_13_3_a2
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Young diagrams without hooks of length 4 and characters of the group $S_n$
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 30-40
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a2/
%G ru
%F TIMM_2007_13_3_a2
V. A. Belonogov. Young diagrams without hooks of length 4 and characters of the group $S_n$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 30-40. http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a2/

[1] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[2] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[3] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR

[4] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[5] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, Ekaterinburg, 2007, 11–43 | MR

[6] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, Ekaterinburg, 2007, 13–32

[7] Belonogov V. A., “O neprivodimykh kharakterov gruppy $S_n$, poluproportsionalnykh na $A_n$”, Algebra i logika, 47:2 (2008), 135–156 | MR | Zbl