Chromatic uniqueness of atoms in lattices of complete multipartite graphs
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 22-29
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new approach is suggested to the study of the chromatic uniqueness of complete multipartite graphs. The approach is based on the natural lattice order introduced for such graphs. It is proved that atoms with nonelemental partite sets are chromatically unique in the lattice of complete $t$-partite $n$-graphs for any given positive integers $n$ and $t$.
			
            
            
            
          
        
      @article{TIMM_2007_13_3_a1,
     author = {V. A. Baranskii and T. A. Koroleva},
     title = {Chromatic uniqueness of atoms in lattices of complete multipartite graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a1/}
}
                      
                      
                    TY - JOUR AU - V. A. Baranskii AU - T. A. Koroleva TI - Chromatic uniqueness of atoms in lattices of complete multipartite graphs JO - Trudy Instituta matematiki i mehaniki PY - 2007 SP - 22 EP - 29 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a1/ LA - ru ID - TIMM_2007_13_3_a1 ER -
V. A. Baranskii; T. A. Koroleva. Chromatic uniqueness of atoms in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 22-29. http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a1/
