Finite groups in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 90-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

All finite semisimple groups are described in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices; thereby, Problem 5.14(v) from the Kourovka Notebook is solved in the main.
@article{TIMM_2007_13_2_a8,
     author = {V. I. Zenkov and A. S. Kondrat'ev and V. M. Levchuk},
     title = {Finite groups in which the normalizers of pairwise intersections of {Sylow} 2-subgroups have odd indices},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {90--103},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a8/}
}
TY  - JOUR
AU  - V. I. Zenkov
AU  - A. S. Kondrat'ev
AU  - V. M. Levchuk
TI  - Finite groups in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 90
EP  - 103
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a8/
LA  - ru
ID  - TIMM_2007_13_2_a8
ER  - 
%0 Journal Article
%A V. I. Zenkov
%A A. S. Kondrat'ev
%A V. M. Levchuk
%T Finite groups in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 90-103
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a8/
%G ru
%F TIMM_2007_13_2_a8
V. I. Zenkov; A. S. Kondrat'ev; V. M. Levchuk. Finite groups in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 90-103. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a8/

[1] Kabanov V. V., Makhnev A. A., Starostin A. I., “Konechnye gruppy s normalnymi peresecheniyami silovskikh 2-podgrupp”, Algebra i logika, 15:6 (1976), 655–658 | MR

[2] Nereshennye voprosy teorii grupp: Kourovskaya tetrad, 15-e izd., NGU, Novosibirsk, 2002 | MR

[3] Voitenko T. Yu., Levchuk V. M., “Parnye unipotentnye peresecheniya grupp Shevalle malykh lievykh rangov”, Simmetriya i differentsialnye uravneniya, IVM SO RAN, Krasnoyarsk, 2000, 71–74

[4] Voitenko T. Yu., Levchuk V. M. Gipoteza V. I., “Zenkova o parnykh $p$-silovskikh peresecheniyakh grupp Shevalle kharakteristiki $p$”, Ukr. mat. zhurn., 54:7 (2002), 749–761 | MR

[5] Levchuk V. M., “Gipertsentralnye ryady i parnye peresecheniya silovskikh podgrupp grupp Shevalle”, Algebra i logika, 41:6 (2002), 730–744 | MR | Zbl

[6] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[7] Aschbacher M., Finite group theory, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[8] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Ser., 129, Cambridge University Press, Cambridge etc., 1990 | MR | Zbl

[9] Zenkov V. I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. i prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl

[10] Zenkov V. I., Mazurov V. D., “O peresechenii silovskikh podgrupp v konechnykh gruppakh”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[11] Gorenstein D., Lyons R., “The local structure of finite groups of characteristic 2 type”, Mem. Amer. Math. Soc., 42, no. 276, 1983, 1–731 | MR

[12] Harris M. E., “Finite groups containing an intrinsic 2-component of Chevalley type over a field of odd order”, Trans. Amer. Math. Soc., 272:1 (1982), 1–65 | DOI | MR | Zbl

[13] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[14] Gorenstein D., Harada K., “On finite groups with Sylow 2-subgroup of type $A_n$, $n=8,9,10,11$”, Math. Z., 117 (1970), 207–238 | DOI | MR | Zbl

[15] Schoenwaelder U., “Finite groups with a Sylow 2-subgroup of type $M_{24}$, I”, J. Algebra, 28:1 (1974), 20–45 | DOI | MR | Zbl

[16] Finkelstein L., “The maximal subgroups of Conway's group $C_3$ and Mclaughlin's group”, J. Algebra, 25:1 (1973), 58–89 | DOI | MR | Zbl

[17] Gorenstein D., Harada K., “Finite simple groups of low 2-rank and the families $G_2(q)$, $D_4^2(q)$, $q$ odd”, Bull. Amer. Math. Soc., 77:6 (1971), 829–862 | DOI | MR | Zbl

[18] Hall D., Senior K., The groups of order $2^n$ ($n\le6$), The Macmillan Company, New York, 1964

[19] Liebeck M. W., Saxl J., Seitz G. M., “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992), 297–325 | DOI | MR | Zbl

[20] Huppert B., Endliche Gruppen I, Springer, Berlin, 1967 | MR | Zbl

[21] Cohen A. M., Liebeck M. W., Saxl J., Seitz G. M., “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc. (3), 64:1 (1992), 21–48 | DOI | MR