The asymptotics of the optimal value of the performance functional in a linear optimal control problem in the regular case
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 55-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem is investigated for a linear system with fast and slow variables, a convex terminal performance functional depending on the slow variables, and smooth geometric constraints on the control. Sufficient regularity conditions are presented for the asymptotics of a solution of this problem, and a complete asymptotic expansion of the optimal value of the performance functional in powers of a small parameter is constructed.
@article{TIMM_2007_13_2_a4,
     author = {A. R. Danilin and Yu. V. Parysheva},
     title = {The asymptotics of the optimal value of the performance functional in a~linear optimal control problem in the regular case},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {55--65},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a4/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - Yu. V. Parysheva
TI  - The asymptotics of the optimal value of the performance functional in a linear optimal control problem in the regular case
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 55
EP  - 65
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a4/
LA  - ru
ID  - TIMM_2007_13_2_a4
ER  - 
%0 Journal Article
%A A. R. Danilin
%A Yu. V. Parysheva
%T The asymptotics of the optimal value of the performance functional in a linear optimal control problem in the regular case
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 55-65
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a4/
%G ru
%F TIMM_2007_13_2_a4
A. R. Danilin; Yu. V. Parysheva. The asymptotics of the optimal value of the performance functional in a linear optimal control problem in the regular case. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 55-65. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[3] Kokotović P. V., Yackel R. A., “Singular perturbation of linear regulators: Basic theorems”, IEEE Trans. Automat. Control, 17:1 (1972), 29–37 | DOI | MR | Zbl

[4] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhniki. Mat. analiz, 20, VINITI, M., 1982, 3–77 | MR

[5] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987 | MR | Zbl

[6] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[7] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[8] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[9] Danilin A. R., “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Mat. sb., 189:11 (1998), 27–60 | MR | Zbl

[10] Danilin A. R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v regulyarnom sluchae”, Differents. uravneniya, 42:11 (2006), 1473–1480 | MR | Zbl

[11] Danilin A. R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR