@article{TIMM_2007_13_2_a3,
author = {S. G. Glebov and O. M. Kiselev and V. A. Lazarev},
title = {The autoresonance threshold in a~system of weakly coupled oscillators},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--54},
year = {2007},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a3/}
}
TY - JOUR AU - S. G. Glebov AU - O. M. Kiselev AU - V. A. Lazarev TI - The autoresonance threshold in a system of weakly coupled oscillators JO - Trudy Instituta matematiki i mehaniki PY - 2007 SP - 43 EP - 54 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a3/ LA - ru ID - TIMM_2007_13_2_a3 ER -
S. G. Glebov; O. M. Kiselev; V. A. Lazarev. The autoresonance threshold in a system of weakly coupled oscillators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 43-54. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a3/
[1] McMillan E. M., “The synchrotron-a proposed high energy particle accelerator”, Phys. Rev., 68 (1945), 143 | DOI
[2] Veksler V. I., “Novyi metod uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43:8 (1944), 346–348
[3] Veksler V. I., “O novom metode uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 44:9 (1944), 393–396
[4] Meerson B. , Friedland L., “Strong autoresonance excitation of Rydberg atoms: the Rydberg accelerator”, Phys. Rev. A, 41 (1990), 5233–5236 | DOI
[5] Meerson B. and Yariv S., “A rigid rotator under slowly-varying kicks: dynamic autoresonance and time-varying chaos”, Phys. Rev. A, 44 (1991), 3570–3582 | DOI
[6] Cohen G., Meerson B., “Dynamic autoresonance and global chaos in a slowly evolving system of two coupled oscillators”, Phys. Rev. E, 47:2 (1993), 967–975 | DOI
[7] Friedland L., “Autoresonant solutions of nonlinear Schrödinger equation”, Phys. Rev. E, 58 (1998), 3865–3875 | DOI | MR
[8] Friedland L., “Subharmonic autoresonance of the diocotron mode”, Physics of Plasmas, 7:5 (2000), 1712–1718 | DOI | MR
[9] Friedland L., “Subharmonic autoresonance”, Phys. Rev. E, 61:4 (2000), 3732–3735 | DOI | MR
[10] Kalyakin L. A., “Asimptoticheskii analiz modeli avtorezonansa”, Dokl. RAN., 378:5 (2001), 594–597 | MR | Zbl
[11] Kalyakin L. A., “Asimptoticheskoe reshenie zadachi o porogovom effekte dlya uravnenii glavnogo rezonansa”, Differents. uravneniya, 40:6 (2004), 731–739 | MR | Zbl
[12] Kalyakin L. A., “Rezonansnyi zakhvat v nelineinoi sisteme”, Teor. i mat. fizika, 144:1 (2005), 74–82 | MR
[13] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, MGU, M., 1966, 244 pp. | MR
[14] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998, 288 pp. | MR | Zbl
[15] Kuznetsov A. N., “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh uravnenii”, Funkts. analiz i ego prilozheniya, 6:2 (1972), 41–51 | MR | Zbl
[16] Kalyakin L. A., Bagderina Yu. Yu., “Asimptotika ogranichennykh na beskonechnosti reshenii uravnenii kvadratichnogo glavnogo rezonansa”, Mat. zametki, 78:1 (2005), 85–97 | MR | Zbl