On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 135-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the development of the viscosity approach to the generalized solution of functional Hamilton–Jacobi type equations with coinvariant derivatives and a nonanticipatory Hamiltonian. These equations are naturally connected to problems of dynamical optimization of hereditary systems and, as compared with classical Hamilton–Jacobi equations, possess a number of additional peculiarities stipulated by the aftereffect. The definition of a viscosity solution that takes the above peculiarities into account is given. The consistency of this definition with the notion of a classical solution and with the minimax approach to the generalized solution is substantiated. The existence and uniqueness theorems are proved.
@article{TIMM_2007_13_2_a12,
     author = {N. Yu. Lukoyanov},
     title = {On viscosity solution of functional {Hamilton{\textendash}Jacobi} type equations for hereditary systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--144},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a12/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
TI  - On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 135
EP  - 144
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a12/
LA  - ru
ID  - TIMM_2007_13_2_a12
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%T On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 135-144
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a12/
%G ru
%F TIMM_2007_13_2_a12
N. Yu. Lukoyanov. On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a12/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[2] Osipov Yu. S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl

[3] Krasovskii N. N., Osipov Yu. S., “Lineinye differentsialno-raznostnye igry”, Dokl. AN SSSR, 197:4 (1971), 777–780 | MR

[4] Kurzhanskii A. B., “O suschestvovanii reshenii uravnenii s posledeistviem”, Differents. uravneniya, 6:10 (1970), 1800–1809

[5] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[6] Krasovskii N. N., “Igrovoe upravlenie v differentsialnykh evolyutsionnykh sistemakh”, Dokl. AN SSSR, 227:5 (1976), 1049–1052 | MR

[7] Krasovskii N. N., Lukoyanov N. Yu., “Zadacha konfliktnogo upravleniya s nasledstvennoi informatsiei”, Prikl. matematika i mekhanika, 60:6 (1996), 885–900 | MR

[8] Lukoyanov N. Yu., “Ob uravnenii tipa Gamiltona–Yakobi v zadachakh upravleniya s nasledstvennoi informatsiei”, Prikl. matematika i mekhanika, 64:2 (2000), 252–263 | MR | Zbl

[9] Lukoyanov N., “Functional Hamilton–Jacobi type equations with ci-derivatives in control problems with hereditary information”, Nonlinear Funct. Anal. Appl., 8:4 (2003), 535–555 | MR | Zbl

[10] Kim A. V., Functional differential equations. Application of $i$-smooth calculus, Kluwer, Dordrecht, 1999 | MR

[11] Aubin J. P., Haddad G., “History path dependent optimal control and portfolio valuation and management”, Positivity, 6 (2002), 331–358 | DOI | MR | Zbl

[12] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991 | MR

[13] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995 | MR

[14] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[15] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282 (1984), 487–502 | DOI | MR | Zbl

[16] Subbotin A. I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl

[17] Krasovskii N. N., Lukoyanov N. Yu., “Uravneniya tipa Gamiltona–Yakobi v nasledstvennykh sistemakh: minimaksnye resheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 1, 2000, 110–130 | MR

[18] Lukoyanov N., “Functional Hamilton–Jacobi type equations in ci-derivatives for systems with distributed delays”, Nonlinear Funct. Anal. Appl., 8:3 (2003), 365–397 | MR | Zbl

[19] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala”, Mat. sb., 98(140):3(11) (1975), 450–493 | MR | Zbl

[20] Crandall M. G., Lions P.-L., “Hamilton–Jacobi equations in infinite dimensions. Part I: Uniqueness of viscosity solutions”, J. Funct. Anal., 62 (1985), 379–396 | DOI | MR | Zbl

[21] Soner H. M., “On the Hamilton–Jacobi–Bellman equations in Banach spaces”, J. Optim. Theory Appl., 57:3 (1988), 429–437 | DOI | MR | Zbl

[22] Crandall M. G., Lions P.-L., “Hamilton–Jacobi equations in infinite dimensions. Part IV: Hamiltonians with unbounded linear terms”, J. Funct. Anal., 90 (1990), 237–283 | DOI | MR | Zbl

[23] Barron E. N., “Application of viscosity solutions of infinite-dimensional Hamilton–Jacobi–Bellman equations to some problems in distributed optimal control”, J. Optim. Theory Appl., 64:2 (1990), 245–268 | DOI | MR | Zbl

[24] Evans L. C., Partial differential equations, Graduate Studies in Mathematics, 19, Amer. Math. Soc., Providence, 1998 | MR | Zbl

[25] Bardi M., Dolcetta I. C., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston, 1996