On the degree of smoothness of solutions of functional differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 120-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the investigation of smoothness of solutions of functional differential equations depending on the properties of their right-hand sides.
@article{TIMM_2007_13_2_a10,
     author = {A. V. Kim and N. G. Kolmogortseva},
     title = {On the degree of smoothness of solutions of functional differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--123},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a10/}
}
TY  - JOUR
AU  - A. V. Kim
AU  - N. G. Kolmogortseva
TI  - On the degree of smoothness of solutions of functional differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 120
EP  - 123
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a10/
LA  - ru
ID  - TIMM_2007_13_2_a10
ER  - 
%0 Journal Article
%A A. V. Kim
%A N. G. Kolmogortseva
%T On the degree of smoothness of solutions of functional differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 120-123
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a10/
%G ru
%F TIMM_2007_13_2_a10
A. V. Kim; N. G. Kolmogortseva. On the degree of smoothness of solutions of functional differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 120-123. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a10/

[1] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, eds. A. D. Myshkis, O. A. Oleinik, Izd-vo MGU, M., 1984 | MR

[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Gostekhizdat, M., 1959 | MR

[3] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Gostekhizdat, M., 1951

[4] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[5] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[6] Kim A. V., $i$-Gladkii analiz i funktsionalno-differentsialnye uravneniya, IMM UrO RAN, Ekaterinburg, 1996

[7] Kim A. V., Functional differential equations. Application of $i$-smooth calculus, Kluwer, Dordrecht, 1999 | MR

[8] Kim A. V., Pimenov V. G., $i$-Gladkii analiz i chislennye metody resheniya funktsionalno- differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2004