Certain pairs of irreducible characters of the groups $S_n$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 13-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The investigation of the pairs of irreducible characters of the symmetric group $S_n$ that have the same set of roots in one of the sets $A_n$ and $S_n\setminus A_n$ is continued. All such pairs of irreducible characters of the group $S_n$ are found in the case when the least of the main diagonal's lengths of the Young diagrams corresponding to these characters does not exceed 2. Some arguments are obtained for the conjecture that alternating groups $A_n$ have no pairs of semiproportional irreducible characters.
@article{TIMM_2007_13_2_a1,
     author = {V. A. Belonogov},
     title = {Certain pairs of irreducible characters of the groups $S_n$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--32},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Certain pairs of irreducible characters of the groups $S_n$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 13
EP  - 32
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a1/
LA  - ru
ID  - TIMM_2007_13_2_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Certain pairs of irreducible characters of the groups $S_n$
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 13-32
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a1/
%G ru
%F TIMM_2007_13_2_a1
V. A. Belonogov. Certain pairs of irreducible characters of the groups $S_n$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 13-32. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a1/

[1] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN. Ekaterinburg, 13, no. 1, 2007, 11–43 | MR

[2] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[3] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR

[4] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[5] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[6] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[7] Schönert M. et. al., GAP (Groups, Algorithms, Programming), Version 4.4.6., Lehrstuhl D für Mathematik, RWTH, Aachen, 2005