Optimal recovery of functions analytical in a half-plane
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the class of functions analytical and bounded in a half-plane with bounded derivative of order $n\ge0$, we solve problems of optimal recovery of values of a function and its derivatives of order $m\ge0$, using the restriction of the spectral function. We obtain appropriate exact inequalities for functions analytical in a half-plane.
@article{TIMM_2007_13_2_a0,
     author = {R. R. Akopian},
     title = {Optimal recovery of functions analytical in a~half-plane},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--12},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a0/}
}
TY  - JOUR
AU  - R. R. Akopian
TI  - Optimal recovery of functions analytical in a half-plane
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 3
EP  - 12
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a0/
LA  - ru
ID  - TIMM_2007_13_2_a0
ER  - 
%0 Journal Article
%A R. R. Akopian
%T Optimal recovery of functions analytical in a half-plane
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 3-12
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a0/
%G ru
%F TIMM_2007_13_2_a0
R. R. Akopian. Optimal recovery of functions analytical in a half-plane. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a0/

[1] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[2] Akhiezer N. I., Lektsii po teorii approksimatsii, GTTI, M., 1947

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[4] Levitan B. M. (B. M. Lewitan), “Über eine Verallgemeinerung von S. Bernstein und H. Bohr”, Dokl. AN SSSR, 15 (1937), 169–172 | Zbl

[5] Magaril-Ilyaev G. G., Osipenko K. Yu., Tikhomirov V. M., “Optimalnoe vosstanovlenie i teoriya ekstremuma”, Dokl. RAN, 379:2 (2001), 161–164 | MR

[6] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Mat. sb., 193:3 (2002), 79–100 | MR

[7] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego prilozheniya, 37:3 (2003), 51–64 | MR

[8] Osipenko K. Yu., “Ob optimalnykh metodakh vosstanovleniya v prostranstvakh Khardi–Soboleva”, Mat. sb., 192:2 (2001), 67–86 | MR | Zbl

[9] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, S dobavleniyami V. I. Levina i S. B. Stechkina, IL, M., 1948

[10] Hörmander L., “A new proof and a generalization of an inequality of Bohr”, Math. Scand., 2 (1954), 33–45 | MR | Zbl

[11] Magaril-Il'yaev G. G., Osipenko K. Yu., Tikhomirov V. M., “Optimal recovery and extremum theory”, Comput. Methods Function Theory, 2:1 (2002), 87–112 | MR

[12] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal estimation in approximation theory, Plenum Press, New York, 1977, 1–55 | MR

[13] Osipenko K. Yu., Optimal recovery of analytic functions, Nova Science Publ. Inc., Huntington, 2000

[14] Tikhomirov V. M., “Approximation theory”, Analysis II. Convex analysis and approximation theory, ed. R. V. Gamkrelidze, Springer-Verlag, New York, 1990, 93–255 | MR

[15] Rahman Q. I., Schmeisser G., “$L^p$ inequalities for entire functions of exponential type”, Trans. Amer. Math. Soc., 320:1 (1990), 91–103 | DOI | MR | Zbl