Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type $HA$
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 132-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the joint paper by Giudici, Li, Praeger, Seress, and Trofimov, it is proved that any graph that is a limit of vertex-primitive graphs of type $HA$ is isomorphic to a Cayley graph of the group $\mathbb Z^d$. Earlier, the author proved that for $d\le3$ the number of pairwise nonisomorphic Cayley graphs of the group $\mathbb Z^d$, which are limits of minimal vertex-primitive graphs of type $HA$, is finite (and obtained their explicit description). The present paper includes the construction of a countable family of such graphs for the case $d=4$; moreover, up to isomorphism there are only finitely many Cayley graphs of such a type outside this family.
@article{TIMM_2007_13_1_a9,
     author = {K. V. Kostousov},
     title = {Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type~$HA$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {132--147},
     year = {2007},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/}
}
TY  - JOUR
AU  - K. V. Kostousov
TI  - Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type $HA$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 132
EP  - 147
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/
LA  - ru
ID  - TIMM_2007_13_1_a9
ER  - 
%0 Journal Article
%A K. V. Kostousov
%T Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type $HA$
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 132-147
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/
%G ru
%F TIMM_2007_13_1_a9
K. V. Kostousov. Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type $HA$. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 132-147. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/

[1] Giudici M., Li C. H., Praeger C. E., Seress A. and Trofimov V., “On limit graphs of finite vertex-primitive graphs”, J. Comb. Theory. Ser. A, 114 (2007), 110–134 | DOI | MR | Zbl

[2] Kostousov K. V., “Grafy Keli grupp $\mathbb Z^d$ i predely vershinno-primitivnykh grafov $HA$-tipa”, Sib. mat. zhurn., 48:3 (2007), 606–620 | MR | Zbl

[3] Kostousov K. V., “Grafy Keli gruppy $\mathbb Z^4$ i predely minimalnykh vershinno-primitivnykh grafov $HA$-tipa”, Algebra i logika, 47:2 (2008), 203–214 | MR | Zbl

[4] Tsishang Kh., Fogt E., Koldevai Kh. D., Poverkhnosti i razryvnye gruppy, Nauka, M., 1988 | MR

[5] Brown H., Bulow H., Neubus̈er J., Wondratschek H., and Zassenhaus H., Crystallographic groups of four-dimensional space, John Wiley, New York, 1978 | Zbl

[6] The GAP Group. GAP–Groups, Algorithms, and Programming. Version 4.4. Aachen–St. Andrews, , 2004 http://www.gap-system.org

[7] Reingold E., Nivergelt Yu., Deo N., Kombinatornye algoritmy. Teoriya i praktika, Mir, M., 1980 | MR | Zbl