Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type~$HA$
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 132-147

Voir la notice de l'article provenant de la source Math-Net.Ru

In the joint paper by Giudici, Li, Praeger, Seress, and Trofimov, it is proved that any graph that is a limit of vertex-primitive graphs of type $HA$ is isomorphic to a Cayley graph of the group $\mathbb Z^d$. Earlier, the author proved that for $d\le3$ the number of pairwise nonisomorphic Cayley graphs of the group $\mathbb Z^d$, which are limits of minimal vertex-primitive graphs of type $HA$, is finite (and obtained their explicit description). The present paper includes the construction of a countable family of such graphs for the case $d=4$; moreover, up to isomorphism there are only finitely many Cayley graphs of such a type outside this family.
@article{TIMM_2007_13_1_a9,
     author = {K. V. Kostousov},
     title = {Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type~$HA$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {132--147},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/}
}
TY  - JOUR
AU  - K. V. Kostousov
TI  - Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type~$HA$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 132
EP  - 147
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/
LA  - ru
ID  - TIMM_2007_13_1_a9
ER  - 
%0 Journal Article
%A K. V. Kostousov
%T Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type~$HA$
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 132-147
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/
%G ru
%F TIMM_2007_13_1_a9
K. V. Kostousov. Cayley graphs of the group$\mathbb Z^4$ that are limits of minimal vertex-primitive graphs of type~$HA$. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 132-147. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a9/