Sets with trivial global stabilizers for primitive permutation groups which are not almost simple
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 115-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a primitive permutation group on a finite set $X$ such that the global stabilizer of any subset of the set $X$ in the group $G$ is nontrivial. The description of $G$ is obtained in the case when $G$ is not almost simple.
@article{TIMM_2007_13_1_a8,
     author = {A. V. Konygin},
     title = {Sets with trivial global stabilizers for primitive permutation groups which are not almost simple},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--131},
     year = {2007},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - Sets with trivial global stabilizers for primitive permutation groups which are not almost simple
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 115
EP  - 131
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/
LA  - ru
ID  - TIMM_2007_13_1_a8
ER  - 
%0 Journal Article
%A A. V. Konygin
%T Sets with trivial global stabilizers for primitive permutation groups which are not almost simple
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 115-131
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/
%G ru
%F TIMM_2007_13_1_a8
A. V. Konygin. Sets with trivial global stabilizers for primitive permutation groups which are not almost simple. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 115-131. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/

[1] Albertson M. O., Collins K. L., “Symmetry breaking in graphs”, Electron. J. Combin., 3:1 (1996), R18 | MR | Zbl

[2] Aschbacher M., Finite group theory, Cambridge University Press, Cambridge, 1993 | MR

[3] Cameron P. J., Neumann P. M., Saxl J., “On groups with no regular orbits on the set of subsets”, Arch. Math., 43 (1984), 295–296 | DOI | MR | Zbl

[4] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson W. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[5] Dixon J. D., Mortimer B., Permutation groups, Springer, New York, 1996 | MR

[6] Fong P., Wong W. J., “A characterization of the finite simple groups $PSp(4,q)$, $G_2(q)$, $D_4^2(q)$. I”, Nagoya Math. J., 36 (1969), 143–184 | MR | Zbl

[7] Gorenstein D., Walter J. H., “The characterization of finite groups with dihedral Sylow 2-subgroups, I”, J. Algebra, 2 (1965), 119–151 | MR

[8] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan-Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Series A, 44 (1988), 389–396 | DOI | MR | Zbl

[9] Malle G., Saxl J., Weigel Th., “Generation for classical groups”, Geom. Dedicata, 49 (1994), 85–116 | DOI | MR | Zbl

[10] Weigel Th., “Generation of exceptional groups of Lie-type”, Geom. Dedicata, 41 (1992), 63–87 | DOI | MR | Zbl

[11] ATLAS of finite group representations. Version 3.004, http://brauer.maths.qmul.ac.uk.