@article{TIMM_2007_13_1_a8,
author = {A. V. Konygin},
title = {Sets with trivial global stabilizers for primitive permutation groups which are not almost simple},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {115--131},
year = {2007},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/}
}
TY - JOUR AU - A. V. Konygin TI - Sets with trivial global stabilizers for primitive permutation groups which are not almost simple JO - Trudy Instituta matematiki i mehaniki PY - 2007 SP - 115 EP - 131 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/ LA - ru ID - TIMM_2007_13_1_a8 ER -
A. V. Konygin. Sets with trivial global stabilizers for primitive permutation groups which are not almost simple. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 115-131. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a8/
[1] Albertson M. O., Collins K. L., “Symmetry breaking in graphs”, Electron. J. Combin., 3:1 (1996), R18 | MR | Zbl
[2] Aschbacher M., Finite group theory, Cambridge University Press, Cambridge, 1993 | MR
[3] Cameron P. J., Neumann P. M., Saxl J., “On groups with no regular orbits on the set of subsets”, Arch. Math., 43 (1984), 295–296 | DOI | MR | Zbl
[4] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson W. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[5] Dixon J. D., Mortimer B., Permutation groups, Springer, New York, 1996 | MR
[6] Fong P., Wong W. J., “A characterization of the finite simple groups $PSp(4,q)$, $G_2(q)$, $D_4^2(q)$. I”, Nagoya Math. J., 36 (1969), 143–184 | MR | Zbl
[7] Gorenstein D., Walter J. H., “The characterization of finite groups with dihedral Sylow 2-subgroups, I”, J. Algebra, 2 (1965), 119–151 | MR
[8] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan-Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Series A, 44 (1988), 389–396 | DOI | MR | Zbl
[9] Malle G., Saxl J., Weigel Th., “Generation for classical groups”, Geom. Dedicata, 49 (1994), 85–116 | DOI | MR | Zbl
[10] Weigel Th., “Generation of exceptional groups of Lie-type”, Geom. Dedicata, 41 (1992), 63–87 | DOI | MR | Zbl
[11] ATLAS of finite group representations. Version 3.004, http://brauer.maths.qmul.ac.uk.