@article{TIMM_2007_13_1_a14,
author = {Na Tang and Wenbin Guo and V. V. Kabanov},
title = {The influence of $s$-semipermutable subgroups on the structure of finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {191--196},
year = {2007},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/}
}
TY - JOUR AU - Na Tang AU - Wenbin Guo AU - V. V. Kabanov TI - The influence of $s$-semipermutable subgroups on the structure of finite groups JO - Trudy Instituta matematiki i mehaniki PY - 2007 SP - 191 EP - 196 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/ LA - en ID - TIMM_2007_13_1_a14 ER -
Na Tang; Wenbin Guo; V. V. Kabanov. The influence of $s$-semipermutable subgroups on the structure of finite groups. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/
[1] Assad M., Csorgo P., “The Influence of Minimal Subgroups on the Structure of Finite Groups”, Arch. Math., 72 (1999), 401–404 | DOI | MR
[2] Buckley J., “Finite Group Whose Minimal Subgroups Are Normal”, Math. Z., 116 (1970), 15–17 | DOI | MR | Zbl
[3] Chen Chongmu, Inner-outer f-groups and Minimal non-$\Sigma$-groups, Southwest Normal University Press, Chongqing, 1988
[4] Deskins W. E., “On Quasinormal Subgroups of Finite Groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl
[5] Doek K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[6] Guo Wenbin, The Theory of Classes of Groups, Science Press, Kluwer Academic Publishers, Beijing, New York and etc., 2000 | MR
[7] Guo Wenbin, “The Influence of Minimal Subgroups on the Structure of Finite Groups”, Southeast Asian Bull. Math., 22 (1998), 287–290 | MR | Zbl
[8] Ito N., “Über eine zur Frattini-Gruppe duale Bildung”, Nagoya Math. J., 9 (1955), 123–127 | MR | Zbl
[9] Kegel O. H., “Sylow-Gruppen and Subnormalteiler Endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[10] Li Q., “Minimal Subgroups and Supersolvablity”, J. Math., 16:2 (1996), 129–132 | MR | Zbl
[11] Li Yangming, Wang Yanming, “On $\pi$-Quasinormally Embedded Subgroups of Finite Groups”, J. Algebra, 281 (2004), 109–123 | DOI | MR | Zbl
[12] Shemetkov L. A., Formations of Finite Groups, Nauka, Moscow, 1978 | MR | Zbl
[13] Su X., “$s$-Seminormal Subgroups of Finite Groups”, J. Math., 8:1 (1988), 5–9 | MR
[14] Tang Na, Guo Wenbin, “On $s$-Semipermutable Subgroups”, Proceeding of the F. Scorina Gomel State University, 3, no. 36, 2006, 88–91
[15] Wang P., Lu Z., Bian P., “On the Supersolvability of QCLT-Groups”, Northeast. Math., 12:1 (1996), 41–45 | MR | Zbl
[16] Xu M., An Introduction to Finite Groups, Science Press, Beijing, 1999
[17] Zhang Qinhai, Wang Lifang, “The Influence of $s$-Semipermutable Subgroups on the Structure of Finite Groups”, J. Math., 48:1 (2005), 81–88 | MR | Zbl