The influence of $s$-semipermutable subgroups on the structure of finite groups
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 191-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subgroup $H$ of a group $G$ is called $s$-semipermutable in $G$ if $H$ is permutable with every Sylow $p$-subgroup of $G$ with $(p,|H|)=1$. In this paper, we use $s$-semipermutable subgroups to determine the structure of finite groups. Some of the previous results are generalized.
@article{TIMM_2007_13_1_a14,
     author = {Na Tang and Wenbin Guo and V. V. Kabanov},
     title = {The influence of $s$-semipermutable subgroups on the structure of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {191--196},
     year = {2007},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/}
}
TY  - JOUR
AU  - Na Tang
AU  - Wenbin Guo
AU  - V. V. Kabanov
TI  - The influence of $s$-semipermutable subgroups on the structure of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 191
EP  - 196
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/
LA  - en
ID  - TIMM_2007_13_1_a14
ER  - 
%0 Journal Article
%A Na Tang
%A Wenbin Guo
%A V. V. Kabanov
%T The influence of $s$-semipermutable subgroups on the structure of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 191-196
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/
%G en
%F TIMM_2007_13_1_a14
Na Tang; Wenbin Guo; V. V. Kabanov. The influence of $s$-semipermutable subgroups on the structure of finite groups. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a14/

[1] Assad M., Csorgo P., “The Influence of Minimal Subgroups on the Structure of Finite Groups”, Arch. Math., 72 (1999), 401–404 | DOI | MR

[2] Buckley J., “Finite Group Whose Minimal Subgroups Are Normal”, Math. Z., 116 (1970), 15–17 | DOI | MR | Zbl

[3] Chen Chongmu, Inner-outer f-groups and Minimal non-$\Sigma$-groups, Southwest Normal University Press, Chongqing, 1988

[4] Deskins W. E., “On Quasinormal Subgroups of Finite Groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl

[5] Doek K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[6] Guo Wenbin, The Theory of Classes of Groups, Science Press, Kluwer Academic Publishers, Beijing, New York and etc., 2000 | MR

[7] Guo Wenbin, “The Influence of Minimal Subgroups on the Structure of Finite Groups”, Southeast Asian Bull. Math., 22 (1998), 287–290 | MR | Zbl

[8] Ito N., “Über eine zur Frattini-Gruppe duale Bildung”, Nagoya Math. J., 9 (1955), 123–127 | MR | Zbl

[9] Kegel O. H., “Sylow-Gruppen and Subnormalteiler Endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[10] Li Q., “Minimal Subgroups and Supersolvablity”, J. Math., 16:2 (1996), 129–132 | MR | Zbl

[11] Li Yangming, Wang Yanming, “On $\pi$-Quasinormally Embedded Subgroups of Finite Groups”, J. Algebra, 281 (2004), 109–123 | DOI | MR | Zbl

[12] Shemetkov L. A., Formations of Finite Groups, Nauka, Moscow, 1978 | MR | Zbl

[13] Su X., “$s$-Seminormal Subgroups of Finite Groups”, J. Math., 8:1 (1988), 5–9 | MR

[14] Tang Na, Guo Wenbin, “On $s$-Semipermutable Subgroups”, Proceeding of the F. Scorina Gomel State University, 3, no. 36, 2006, 88–91

[15] Wang P., Lu Z., Bian P., “On the Supersolvability of QCLT-Groups”, Northeast. Math., 12:1 (1996), 41–45 | MR | Zbl

[16] Xu M., An Introduction to Finite Groups, Science Press, Beijing, 1999

[17] Zhang Qinhai, Wang Lifang, “The Influence of $s$-Semipermutable Subgroups on the Structure of Finite Groups”, J. Math., 48:1 (2005), 81–88 | MR | Zbl