The $D_\pi$ property of finite groups in the case $2\notin\pi$
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 166-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The characterization of finite simple groups with the $D_\pi$ propert for any set $\pi$ of odd prime numbers is completed. It was proved earlier that a finite group has the $D_\pi$ property if and only if each of its composition factors has this property, hence the results of the paper provide an exhaustive characterization of the $D_\pi$ property for all finite groups with known composition factors in the case $2\notin\pi$.
@article{TIMM_2007_13_1_a12,
     author = {D. O. Revin},
     title = {The $D_\pi$ property of finite groups in the case $2\notin\pi$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--182},
     year = {2007},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a12/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - The $D_\pi$ property of finite groups in the case $2\notin\pi$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 166
EP  - 182
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a12/
LA  - ru
ID  - TIMM_2007_13_1_a12
ER  - 
%0 Journal Article
%A D. O. Revin
%T The $D_\pi$ property of finite groups in the case $2\notin\pi$
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 166-182
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a12/
%G ru
%F TIMM_2007_13_1_a12
D. O. Revin. The $D_\pi$ property of finite groups in the case $2\notin\pi$. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 166-182. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a12/

[1] Hall P., “Theorems like Sylow's”, Proc. London Math. Soc., 6:22 (1956), 286–304 | DOI | MR | Zbl

[2] Gross F., “On a conjecture of Philip Hall”, Proc. London Math. Soc. Ser. III, 52:3 (1986), 464–494 | DOI | MR | Zbl

[3] Gross F., “Odd order Hall subgroups of the classical linear groups”, Math. Z., 220:3 (1995), 317–336 | DOI | MR | Zbl

[4] Gross F., “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[5] Vdovin E. P., Revin D. O., “Khollovy podgruppy nechetnogo poryadka konechnykh grupp”, Algebra i logika, 41:1 (2002), 15–56 | MR | Zbl

[6] Thompson J. G., “Hall subgroups of the symmetric groups”, J. Comb. Th. Ser. A, 1 (1966), 271–279 | DOI | MR | Zbl

[7] Revin D. O., “Svoistvo $D_\pi$ v odnom klasse konechnykh grupp”, Algebra i logika, 41:3 (2002), 335–370 | MR | Zbl

[8] Carter R. W., Simple groups of Lie type, Wiley, London, 1972 | MR | Zbl

[9] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1(247) (1986), 57–96 | MR

[10] Humphreys J. E., Linear algebraic groups, Springer-Verlag, New York, 1972 | MR | Zbl

[11] Borel A., Tits J., “Eléments unipotents et sousgroupes paraboliques de groupes réductifs, I”, Invent. Math., 12:2 (1971), 95–104 | DOI | MR | Zbl

[12] Borel A., de Siebental J., “Les-sous-groupes fermés de rang maximum des groupes de Lie clos”, Comment. Math. Helv., 23 (1946), 200–221 | DOI | MR

[13] Gorenstein D., Konechnye prostye gruppy: vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[14] Revin D. O., “Superlokaly v simmetricheskikh i znakoperemennykh gruppakh”, Algebra i logika, 42:3 (2003), 338–365 | MR | Zbl

[15] Alperin J. L., Fong P., “Weights for symmetric and general linear groups”, J. Algebra, 131:1 (1990), 2–22 | DOI | MR | Zbl

[16] An J., “Weights for classical groups”, Trans. Amer. Math. Soc., 342:1 (1994), 1–42 | DOI | MR | Zbl

[17] Griess R., “Automorphisms of extra special groups and nonvanishing degree 2 cohomology”, Pacif. J. Math., 48 (1973), 403–411 | MR

[18] Borovik A. V., “The structure of finite subgroups of simple algebraic groups”, Algebra and Logic, 28:3 (1989), 163–183 | DOI | MR

[19] Borovik A. V., “The structure of Jordan subgroups of simple algebraic groups”, Algebra and Logic, 28:2 (1989), 97–108 | DOI | MR | Zbl

[20] Cohen A. M., Liebeck M. W., Saxl J., Seitz G. M., “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc., Ser. III, 64:1 (1992), 21–48 | DOI | MR

[21] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[22] Feit W., Thompson J., “Solvability of groups of odd order”, Pacif. J. Math., 13:3 (1963), 775–1029 | MR | Zbl

[23] Kleidman P. B., Liebeck M., The subgroup structure of finite classical groups, Cambridge Univ. Press, Cambridge, 1990 | MR

[24] Revin D. O., Vdovin E. P., “Hall subgroups of finite groups”, Ischia Group Theory 2004, Proceedings of a Conference in Honour of Marcel Herzog, Contemporary Mathematics, 402, 2006, 229–265 | MR

[25] Wielandt H., “Zum Satz von Sylow”, Math. Z., 60:4 (1954), 407–408 | DOI | MR | Zbl

[26] Carter R. W., Finite groups of Lie type, conjugacy classes and complex characters, Wiley, London, 1985 | MR

[27] Mazurov V. D., Revin D. O., “O khollovom $D_\pi$-svoistve dlya konechnykh grupp”, Sib. mat. zhurn., 38:1 (1997), 125–134 | MR | Zbl

[28] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[29] Malle G., “The maximal subgroups of ${}^2F_4(q^2)$”, J. Algebra, 139:1 (1991), 52–69 | DOI | MR | Zbl