The $D_\pi$ property of finite groups in the case $2\notin\pi$
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 166-182
Voir la notice de l'article provenant de la source Math-Net.Ru
The characterization of finite simple groups with the $D_\pi$ propert for any set $\pi$ of odd prime numbers is completed. It was proved earlier that a finite group has the $D_\pi$ property if and only if each of its composition factors has this property, hence the results of the paper provide an exhaustive characterization of the $D_\pi$ property for all finite groups with known composition factors in the case $2\notin\pi$.
@article{TIMM_2007_13_1_a12,
author = {D. O. Revin},
title = {The $D_\pi$ property of finite groups in the case $2\notin\pi$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {166--182},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a12/}
}
D. O. Revin. The $D_\pi$ property of finite groups in the case $2\notin\pi$. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 166-182. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a12/