Uniform extensions of partial geometries
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 148-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A geometry of rank 2 is an incidence system $(P,\mathcal B)$, where $P$ is a set of points and $\mathcal B$ is a set of subsets from $P$, called blocks. Two points are called collinear if they lie in a common block. A pair $(a,B)$ from $(P,\mathcal B)$ is called a flag if its point belongs to the block, and an antiflag otherwise. A geometry is called $\varphi$-uniform ($\varphi$ is a natural number) if for any antiflag $(a,B)$ the number of points in the block $B$ collinear to the point a equals 0 or$\varphi$, and strongly $\varphi$-uniform if this number equals $\varphi$. In this paper, we study $\varphi$-uniform extensions of partial geometries $pG_\alpha(s,t)$ with $\varphi=s$ and strongly $\varphi$-uniform geometries with $\varphi=s-1$. In particular, the results on extensions of generalized quadrangles, obtained earlier by Cameron and Fisher, are extended to the case of partial geometries.
@article{TIMM_2007_13_1_a10,
     author = {A. A. Makhnev and M. S. Nirova},
     title = {Uniform extensions of partial geometries},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {148--157},
     year = {2007},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a10/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. S. Nirova
TI  - Uniform extensions of partial geometries
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 148
EP  - 157
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a10/
LA  - ru
ID  - TIMM_2007_13_1_a10
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. S. Nirova
%T Uniform extensions of partial geometries
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 148-157
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a10/
%G ru
%F TIMM_2007_13_1_a10
A. A. Makhnev; M. S. Nirova. Uniform extensions of partial geometries. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 148-157. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a10/

[1] Cameron P. J., Hughes D. R., Pasini A., “Extended generalized quadrangles”, Geom. Dedicata, 35 (1990), 193–228 | DOI | MR | Zbl

[2] Thas J. A., “Some results on quadrics and new partial geometries”, Simon Stevin, 55 (1981), 129–139 | MR | Zbl

[3] Hobart S. A., Hughes D. R., “Extended partial geometries: nets and dual nets”, Europ. J. Comb., 11 (1990), 357–372 | MR | Zbl

[4] Hobart S. A., Hughes D. R., “$EpGs$ with minimal $\mu$, II”, Geom. Dedicata, 42 (1992), 129–138 | DOI | MR | Zbl

[5] Hughes D. R., “Extended partial geometries: dual 2-design”, Europ. J. Comb., 11 (1990), 459–472 | MR

[6] Seidel J. J., “Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3”, Linear Algebra Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[7] Brouwer A. E., Lint J. H. van., “Strongly regular graphs and partial geometries”, Enumeration Design, 1984, 85–122, Academic Press, New York | MR