Certain pairs of irreducible characters of the groups $S_n$ and $A_n$
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 11-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Investigation of pairs of semiproportional irreducible characters of finite groups is continued. The interest in these investigations is maintained by the discovered earlier connection between the presence or absence of such a pair in a group and the local structure of this group. In the paper, the question of the presence of such pairs in the alternating groups $A_n$ is investigated. A more general problem of description of pairs of irreducible characters of the symmetric group $S_n$ having the same set of roots in one of the sets $A_n$ and $S_n\setminus A_n$ is also considered. All such pairs of irreducible characters of the symmetric group $S_n$ have been found in the case when the main diagonal lengths of the Young diagrams corresponding to these characters do not exceed 2.
@article{TIMM_2007_13_1_a1,
     author = {V. A. Belonogov},
     title = {Certain pairs of irreducible characters of the groups $S_n$ and $A_n$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {11--43},
     year = {2007},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Certain pairs of irreducible characters of the groups $S_n$ and $A_n$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 11
EP  - 43
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a1/
LA  - ru
ID  - TIMM_2007_13_1_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Certain pairs of irreducible characters of the groups $S_n$ and $A_n$
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 11-43
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a1/
%G ru
%F TIMM_2007_13_1_a1
V. A. Belonogov. Certain pairs of irreducible characters of the groups $S_n$ and $A_n$. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 11-43. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a1/

[1] Belonogov V. A., “Vzaimodeistviya i $D$-bloki v konechnykh gruppakh”, Podgruppovaya struktura grupp, UrO AN SSSR, Sverdlovsk, 1988, 4–44 | MR

[2] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990, 380 pp. | MR

[3] Belonogov V. A., “O malykh vzaimodeistviyakh v konechnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, Ekaterinburg, 1992, 3–18 | MR | Zbl

[4] Belonogov V. A., “Malye vzaimodeistviya v gruppakh $\mathrm{GL}_3(q)$, $\mathrm{GU}_3(q)$, $\mathrm{PGL}_3(q)$ i $\mathrm{PGU}_3(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 4, Ekaterinburg, 1996, 17–47 | MR | Zbl

[5] Belonogov V. A., “Malye vzaimodeistviya v gruppakh $\mathrm{SL}_3(q)$, $\mathrm{SU}_3(q)$, $\mathrm{PsL}_3(q)$ i $\mathrm{PsU}_3(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 3–27 | Zbl

[6] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[7] Belonogov V. A., “K gipoteze o poluproportsionalnykh kharakterakh”, Sib. mat. zhurn., 46:2 (2005), 299–314 | MR | Zbl

[8] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl

[9] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$. II”, Algebra i logika, 44:6 (2005), 643–663 | MR | Zbl

[10] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[11] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981, 510 pp. | MR

[12] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982, 214 pp. | MR