Analysis of stability and synthesis of stable control systems for a class of nonlinear nonstationary systems
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 98-107
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the basis of sufficient condition of the stability of linear nonstationary discrete systems stated in this paper, we carry out an analysis of stability for a special class of discrete systems with nonstationary linear part, whose parameters satisfy constraints in the form of sets, and with a scalar nonlinear function satisfying linear or nonlinear restrictions. The problem of parametric synthesis of robustly stable control systems is solved for the same class of objects. The obtained results are generalized to the class of nonstationary systems with many nonlinearities of the same type.
@article{TIMM_2006_12_2_a8,
     author = {V. M. Kuntsevich},
     title = {Analysis of stability and synthesis of stable control systems for a~class of nonlinear nonstationary systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--107},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a8/}
}
TY  - JOUR
AU  - V. M. Kuntsevich
TI  - Analysis of stability and synthesis of stable control systems for a class of nonlinear nonstationary systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 98
EP  - 107
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a8/
LA  - ru
ID  - TIMM_2006_12_2_a8
ER  - 
%0 Journal Article
%A V. M. Kuntsevich
%T Analysis of stability and synthesis of stable control systems for a class of nonlinear nonstationary systems
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 98-107
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a8/
%G ru
%F TIMM_2006_12_2_a8
V. M. Kuntsevich. Analysis of stability and synthesis of stable control systems for a class of nonlinear nonstationary systems. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 98-107. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a8/

[1] Lure A. I., Postnikov V. N., “K teorii ustoichivosti reguliruemykh sistem”, Prikl. matematika i telemekhanika, 8:3 (1944), 246–248

[2] Shor N. Z., Berezovski O. A., “New algorithms for constructing optimal circumscribed and inscribed ellipsoid”, Optimization Methods and Software, 1 (1992), 283–299 | DOI

[3] Kuntsevich V. M., Kuntsevich A. V., “Analysis and synthesis of optimal and robustly optimal control systems under bounded disturbances”, Proc. of the 14th IFAC World Congress, V. F: Nonlinear Systems, Beijing, China, 1999, 163–168

[4] Kuntsevich V. M., Upravlenie v usloviyakh neopredelennosti: garantirovannye rezultaty v zadachakh upravleniya i identifikatsii, Naukova dumka, Kiev, 2006, 260 pp. | Zbl