Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 88-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of reconstruction of boundary regimes in a model for free convection of a high-viscosity fluid is considered. A variational method and a quasi-inversion method are suggested for solving the problem in question. The variational method is based on the reduction of the original inverse problem to some equivalent variational minimum problem for an appropriate objective functional and solving this problem by a gradient method. When realizing the gradient method for finding a minimizing element of the objective functional, an iterative process actually reducing the original problem to a series of direct well-posed problems is organized. For the quasi-inversion method, the original differential model is modified by means of introducing special additional differential terms of higher order with small parameters as coefficients. The new perturbed problem is well-posed; this allows one to solve this problem by standard methods. An appropriate choice of small parameters gives an opportunity to obtain acceptable qualitative and quantitative results in solving the inverse problem. A comparison of the methods suggested for solving the inverse problem is made with the use of model examples.
@article{TIMM_2006_12_2_a7,
     author = {A. I. Korotkii and D. A. Kovtunov},
     title = {Reconstruction of boundary regimes in the inverse problem of thermal convection of a~high-viscosity fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {88--97},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a7/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. A. Kovtunov
TI  - Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 88
EP  - 97
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a7/
LA  - ru
ID  - TIMM_2006_12_2_a7
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. A. Kovtunov
%T Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 88-97
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a7/
%G ru
%F TIMM_2006_12_2_a7
A. I. Korotkii; D. A. Kovtunov. Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 88-97. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a7/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[4] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, 1995 | MR | Zbl

[5] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999

[6] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[7] Romanov V. G., Kabanikhin S. I., Obratnye zadachi geoelektriki, Nauka, M., 1991 | MR

[8] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[9] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[10] Prilepko F. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Monographs and Textbooks in Pure and Applied Mathematics, 231, Marcel Dekker, 1994

[11] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[12] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[13] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR | Zbl

[14] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[15] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973

[16] Polak E., Chislennye metody optimizatsii. Obschii podkhod, Mir, M., 1974 | MR | Zbl

[17] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi (CGS'2005), Tr. Mezhdunar. seminara, posvyaschennogo 60-letiyu akademika A. I. Subbotina. T. 2, UrO RAN, Ekaterinburg, 2006, 76–85

[18] Buleev N. I., Prostranstvennaya model turbulentnogo obmena, Nauka, M., 1989 | MR | Zbl

[19] Weinan E., Liu J.-G., “Vorticity boundary condition and related issues for finite difference schemes”, J. Computational Physics, 124 (1996), 368–382 | DOI | MR | Zbl

[20] Ismail-Zadeh A. T., Schubert G., Tsepelev I. A., Korotkii A. I., “Inverse problem of thermal convection: numerical approach and application to mantle plume restoration”, Physics of the Earth and Planetary Interiors, 145 (2004), 99–114 | DOI

[21] Ismail-Zadeh A., Tsepelev I., Talbot C., Korotkii A., “Three-dimensional forward and backward modelling of diapirism: Numerical approach and its applicability to the evolution of salt structures in the Pricaspian basin”, Tectonophysics, 387:1–4 (2004), 81–103 | DOI