Error bounds for attainability sets of control systems with phase constraints
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of the error bounds for attainability sets of control systems described by ordinary differential equations under discretization of the phase constraints is studied. The peculiarity of the problems investigated in this paper is the phase constraints in the form of equality.
@article{TIMM_2006_12_2_a5,
     author = {M. I. Gusev},
     title = {Error bounds for attainability sets of control systems with phase constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {64--77},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a5/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - Error bounds for attainability sets of control systems with phase constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 64
EP  - 77
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a5/
LA  - ru
ID  - TIMM_2006_12_2_a5
ER  - 
%0 Journal Article
%A M. I. Gusev
%T Error bounds for attainability sets of control systems with phase constraints
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 64-77
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a5/
%G ru
%F TIMM_2006_12_2_a5
M. I. Gusev. Error bounds for attainability sets of control systems with phase constraints. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 64-77. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a5/

[1] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamic solutions, Gordon and Breach, 1995 | MR | Zbl

[2] Kryazhimskii A. V., Osipov Yu. S., “O pozitsionnom modelirovanii upravleniya v dinamicheskikh sistemakh”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[3] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000

[4] Kurzhanski A. B., Valýi I., Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997 | MR

[5] Chernousko F. L., State Estimation for Dynamical Systems, CRC Press, Boca Raton, Florida, 1994

[6] Kostousova E. K., “Ob approksimatsii zadachi vybora optimalnogo sostava izmerenii v parabolicheskoi sisteme”, Zhurn. vychisl. matematiki i mat. fiziki, 30:9 (1990), 1294–1306 | MR | Zbl

[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[8] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[9] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 1998, no. 2, 179–186 | MR

[10] Gusev M. I., “On Stability of Information Domains in Guaranteed Estimation Problems”, Proc. of the Steklov Inst. of Math., Suppl. 1, 2000, S104–S118 | MR

[11] Gusev M. I., Romanov S. A., “On stability of guaranteed estimation problems: error bounds for information domains and experimental design”, Semi-Infinite Programming: Recent Advances, Nonconvex Optim. Appl., 57, eds. M. A. Goberna and M. A. Lopez, Kluwer Acad. Pub., 2001, 299–326 | MR | Zbl

[12] Filippova T. F., “A note on the evolution property of the assembly of viable solutions to a differential inclusion”, Computers Math. Appl., 25:2 (1993), 115–121 | DOI | MR | Zbl

[13] Robinson S. M., “An application of error bounds for convex programming in a linear space”, SIAM J. Control Optim., 13 (1975), 271–273 | DOI | MR | Zbl

[14] Levitin A. V., “O zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, Vest. Moskovskogo un-ta, 1971, no. 3, 59–68 | MR | Zbl