@article{TIMM_2006_12_2_a5,
author = {M. I. Gusev},
title = {Error bounds for attainability sets of control systems with phase constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {64--77},
year = {2006},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a5/}
}
M. I. Gusev. Error bounds for attainability sets of control systems with phase constraints. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 64-77. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a5/
[1] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamic solutions, Gordon and Breach, 1995 | MR | Zbl
[2] Kryazhimskii A. V., Osipov Yu. S., “O pozitsionnom modelirovanii upravleniya v dinamicheskikh sistemakh”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR
[3] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000
[4] Kurzhanski A. B., Valýi I., Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997 | MR
[5] Chernousko F. L., State Estimation for Dynamical Systems, CRC Press, Boca Raton, Florida, 1994
[6] Kostousova E. K., “Ob approksimatsii zadachi vybora optimalnogo sostava izmerenii v parabolicheskoi sisteme”, Zhurn. vychisl. matematiki i mat. fiziki, 30:9 (1990), 1294–1306 | MR | Zbl
[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[8] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl
[9] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 1998, no. 2, 179–186 | MR
[10] Gusev M. I., “On Stability of Information Domains in Guaranteed Estimation Problems”, Proc. of the Steklov Inst. of Math., Suppl. 1, 2000, S104–S118 | MR
[11] Gusev M. I., Romanov S. A., “On stability of guaranteed estimation problems: error bounds for information domains and experimental design”, Semi-Infinite Programming: Recent Advances, Nonconvex Optim. Appl., 57, eds. M. A. Goberna and M. A. Lopez, Kluwer Acad. Pub., 2001, 299–326 | MR | Zbl
[12] Filippova T. F., “A note on the evolution property of the assembly of viable solutions to a differential inclusion”, Computers Math. Appl., 25:2 (1993), 115–121 | DOI | MR | Zbl
[13] Robinson S. M., “An application of error bounds for convex programming in a linear space”, SIAM J. Control Optim., 13 (1975), 271–273 | DOI | MR | Zbl
[14] Levitin A. V., “O zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, Vest. Moskovskogo un-ta, 1971, no. 3, 59–68 | MR | Zbl